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Preface

This collection contains a selection from the body of exercises that have been
used in problem session classes at ELTE TTK in the past few decades. These
classes include the current analysis courses in the Mathematics BSc programs
as well as previous offerings of Analysis I-IV and Complex Functions.

We recommend these exercises for the participants and teachers of the
Mathematician, Applied Mathematician programs and for the more experi-
enced participants of the Teacher of Mathematics program.

All exercises are labelled by a number referring to its difficulty. This
number roughly means the possible position of the problem in an exam. For
the Teacher program the range is 1-7, for the Applied Mathematician program
2-8, and for the Mathematician program 3-9. (Usually the students need
to solve five problems correctly for maximum grade; the sixth and seventh
problems are to challenge the best students.) Problems with difficulty 10
are not expected to appear on an exam, they are recommended for students
aspiring to become researchers.

For many exercises we are not aware of the exact origin. They are passed
on by “word of mouth” from teacher to teacher, or many times from the
teacher of the teacher to the teacher. Many exercises may have been created
several generations before.

However one of the sources can be identified, it is “the mimeo”, a widely
circulated set of problems duplicated by a mimeograph in the 70’s. The
problems within “the mimeo” were mainly collected or created by Miklés
Laczkovich, Léaszlé Lempert and Lajos Posa.

Let us give only a (most likely not complete) list of our colleagues who
were recently giving lectures or leading problem sessions at the Department
of Analysis in Real and Complex Analysis:

Matyéds Bognar, Zoltan Buczolich, Akos Csészar, Marton Elekes, Margit
Gémes, Gabor Haldsz, Tamas Keleti, Miklés Laczkovich, Gyorgy Petruska,
Szilard Révész, Richard Rimanyi, Istvan Sigray, Miklés Simonovics, Zoltan
Szentmikldssy, Rébert Széke, Andrés Szlics, Vera T. Sés.

9



Some problems from the textbook Analizis I. of Miklés Laczkovich and
Vera T. So6s are reproduced in this volume with their kind permission. We
are grateful for their generosity.

We thank everyone whose help was invaluable in creating this volume,
the above mentioned professors and all the students who participated in
these classes. As usual when typesetting the problems we may have added
some errors of mathematical or typographical nature; for which we take sole
responsibility.
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Problems

11






Chapter 1

Basic notions. Axioms of
the real numbers

1.0.1 Fundaments of Logic

1.0.1. (1)

1.0.2. (3)

1. A= B 2. A= B

1.0.3. (2)

Calculate the truth table

AV (B= A)

Calculate the truth tables.

3. A= (B=C)

Let P(x) mean ,,z is even” and let H(z) mean ,,x is divisible by

six”. What is the meaning of the following formulas and are they true? (-
denotes the negation.)

1.
2.

3.

P(4) A H(12)

13
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1. BASIC NOTIONS. AXIOMS OF THE REAL NUMBERS

1.0.4. (3)

Let H C R be a subset. Formalize the following statements and

their negations. Is there a set with the given property?

1. H has at most 3 elements.
2. H has no least element.
3. Between any two elements of H there is a third one in H.
4. For any real number there is a greater one in H.
1.0.5. (2) . ‘ . ,
Formalize the statements: ‘There is no greatest natural number
and ‘There is a greatest natural number’ (logical signs, = and < can be
used).

1.0.6.

|

1.0.7.

H

(a
(b
(c
(

5) What is the meaning of the following statements if H C N?

(e H)A(NVzx e H (x+1) € H);
(leH)AN2eH)ANNVMzeN(xeHA(z+1)eH)= (z+2)€ H);
(leH)AN(VzxeNWVyeNy<axz=yecH))=>z€H);

)
)
)

d)VzeN(z¢€H)=(FyeN(y<zAy¢gH);

(7)

How many sets H C {1,2,...,n} do exist for which Vz (x €

H=z+1¢H)?

1.0.8. (7)

How many sets H C {1,2,...,n} do exist for which Va ([(x €

HAN(z+1eH)]=x+2€ H)?

1.0.9. (5) Which statement does imply which one?
1. Vee H)(Gye H)(a+ye ANx —y € A);
2. (FreH)(VWweH)(x+ycAnae—yec A
3. Vee H(Bye H)(z+yecA).
1.0.10. (4) What is the meaning of the following formulas if H is a set of
numbers?
(a) Ve e R3Jy € H z < y; (b) Ve € H Iy € Rz < y; (c)

Vee HIye Hax<y.
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1.0.11. (5) Let A and B two sets of numbers, which statement implies which
one?
(a)Vee AJye Bz<y (c)Vee AVye Bx<y
(b)IJye BVze Ax <y (d)dJxe AJyeBar<y

Ll () Prove that the implication is left distributive with respect to the

disjunction.

Related problem: 1.0.13

1.0.13. (5) (a) Is it true that the implication is right distributive with respect

to the conjunction?
(b) Is it true that the implication is left distributive with respect to the
conjunction?
Related problem: 1.0.12

1.0.14. (4) Let NOR(z,y) = —(z V y). Using only the NOR operation we
can create several expressions, e.g., NOR(z, NOR(NOR(z, y), NOR(z, x))).
(a) Show that we can generate all logic functions of n variables in this
way!
(b) Show another example of a logic function of 2-variable NOR with this
generating property!

vcc 4Y 4B 4A  3¥ 38 3A
141 |13{ (12| |11 [|10] |9} 8

1012]||3/{a|[5][|6]|7
1Y 1A 18 2Y 2A 28 GWND

A Texas Instruments SN7402N integrated circuit, with 4 independent NOR logic gates

1.0.15. (6) Show that any Boolean function f(x1,xs,...,x,) of n variables

(i.e. a function assigning a true/false value to n true/false values) can be
expressed by using only variable names, brackets, the constant false value
and the implication operation (=).

1.0.16. (8) Show that a Boolean function f(z1, %2, ...,%,) of n variables (i.e.

a function assigning a true/false value to n true/false values) can be expressed
by using only variable names, brackets and the implication operation (=) if
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and only if

Jke{l,2,...,n} (le,...,xn (J:k :>f(1'1,$2,...,$n))).

1.0.2 Sets, Functions, Combinatorics

1.0.17. (2) Solve: |2z — 1| < |22 — 4.

1.0.18. (3) Find the parallelogram with greatest area with given perimeter.

1.0.19. (2) What are the solutions of the following equation?

el A e D R
2 2 N

1.0.20. (1)

1. How many words of length k can be created using the letters A, B, C,
D, E,F, G?

2. How many such word of length 7 can be created without repeating a
letter?

3. How many such word of length 7 can be created with the property that
A and B are neighbors (no repetition)?

1.0.21. (2) | g oipoe

(1) ()= (G)

Prove the so-called binomial theorem:

(a+b)" = (g>a” + (?)a”—ler e <Z>b".

1.0.22. (4)
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1.0.23. 3) } \Which one is bigger? 639° or 6389 + 9 - 63857

1‘0‘724'7(3) Prove the De Morgan identities, i.e., AUB = ANB,and AN B =
AUB.

1.0.25. (3) Prove that AU(BNC)=(AUuB)N(AUC).

1.0.26. (2)

Let A={1,2,..,n} and B={1,...,k}.
1. How many different functions f: A — B do exist?
2. How many different injective functions f : A — B do exist?

3. How many different functions f : Ay — B do exist, where Ay C A is
arbitrary?

Prove that z € A;AA>A---AA, if and only if x is an element
of an odd number of A;’s.

1.0.27. (4)

1.0.28. (3) Let AAB = (A\ B)U (B\ A) denote the symmetric difference
of the sets A and B. Show that for any sets A, B, C":
1. AAD = A, 2. AANA =10, 3. (AAB)AC = AA(BACQ).

1.0.29. (2) How many lines are determined by n points in the plane? And

how many planes are determined by n points in the space?

1.0.30. (3) How many ways can one put on the chessboard:

1. 2 white rooks,
2. 2 white rooks such that they cannot capture each other,
3. 1 white rook and 1 black rook,

4. 1 white rook and 1 black rook such that they cannot capture each other?

1.0.31. (4) How many different rectangles can be seen on the chessboard?
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1.0.32. (3) Is it true for all triples A, B, C of sets that
(a) (AAB)AC = AA(BAC);
(b) (AAB)NC = (ANnCYA(BNC);
(c) (AAB)UC = (AuC)A(BUC)?

Is it true that the subsets of a set H form a ring with identity
using the symmetric difference and a) the intersection b) the union?

1.0.34. (4) Let f: A — B. For any set X C Alet f(X) ={f(z): = €
X} (the image of the set X), and for any set Y C B let f~1(Y) = {2 €
A: f(z) € Y} (the preimage of the set V). Is it true that

(a) VX, Y e P(A) fF(X)UFY)=f(XUY)?
(b) VX,Y € P(B) f~Y(X)Uf(Y) = f~Y(XUY)?

1.0.35. (4) | 1ot £: A= B. Is it true that
() VX, € P(A) f(X) N f(V) = F(X 1Y) ?
(b) VX,Y € P(B) f1(X)N f1(Y) = f~ (X NY)?

1.0.36. (8)

1.0.33. (4)

Let Ay, As,... be non-empty finite sets, and for all positive
integer n let f, be a map from A, ;1 to A,. Prove that there exists an
infinite sequence x1,Ts,... such that for all n the conditions z,, € A,, and
frn(@ny,) = x5, hold (Konig’s lemma).

1.0.37. (8) Using Konig’s lemma (see exercise 1.0.36) verify that if all finite

subgraphs of a countable graph can be embedded into the plane, then the

whole graph can be embedded into the plane as well.

1.0.38. (7) Show an example of an associative operation o : P(R) x P(R) —

P(R) for which the union operation is left distributive but not right distribu-
tive. (Here P(R) denotes the set of all subsets of the real line R.)

1.0.3 Proving Techniques: Proof by Contradiction, In-
duction

1.0.39. (7) We cut two diagonally opposite corner squares of a chessboard.

Can we cover the rest with 1 x 2 dominoes? And for the nx k “chessboard”?

1.0.40. (7) Consider the set H := {2,3,...n + 1}. Prove that

> I1: =

0#£SCH ieS



(For example for n =3 we have 3 + 3+ 1+ 35 + 55 + 35 + 537 = 2.)

1.0.41. (6) We cut a corner square of a 2™ by 2" chessboard. Prove that the
rest can be covered with disjoint L-shaped dominoes consisting of 3 squares.

1.0.42. (3) Prove that

1 1 1 n+1
1—=)(1=2)...(1-=)==—.
(=) (=5) (%)%

1.0.43. (4)

1. Let a; =1 and an+1 = v/2a,, + 3. Prove that Vn € N a,, < ayp41.

2. Let a1 = 0.9 and an+1 = an — a%. Prove that Vn € N a,, 41 < a, and
0<a, <l1.

1.0.44. (7) Prove that tan 1° is irrational!

At least how many steps do you need to move the 64 stories high
Hanoi tower?

1.0.45. (5)

—

Towers of Hanoi

For how many parts the plane is divided by n lines if no 3 of
them are concurrent?

1.0.47. (8)

1.0.46. (5)

For how many parts the space is divided by n planes if no 4 of
them have a common point and no 3 of them have a common line?
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1.0.48. (5) Prove that finitely many lines or circles divide the plane into do-

mains which can be colored with two colors such that no neighboring domains
have the same color.

LOA: (3) Prove that the following identity holds for all positive integer n:
U S ! _
1-3 5T 2n—1)-(2n+1) 2+ 17

1.0.50. Prove that the following identity holds for all positive integer n:

—~

3)

mniyn

r—=y

xnfl+xn72.y+'“+z.yn72+yn71

I I

1.0.51. (3)

Prove that the following identity holds for all positive integer n:

2
13+.._+n3: <n<n+1>> )
2

Prove that the following identities hold for all positive integer n:

1 11 N +1_
3 77 o2n n+1 7 2n]

" 1 ~n—1
T n=1)-n  n

1.0.52. (3)

—_

—_
—_ —
[

\}

[\

.‘H

—_
[N}
_|_

1.0.53- ) | prove that 1-442-7+3-10+ -+ +n(3n + 1) = n(n + 1)2.

1.0.54. (5) Express the following sums in closed forms!

L 14+34+5+7+...+2n+1);

1
2. ——+... ;
1~2-3+ +n-(n—i—l)~(n+2)’

—

3.1-24+...4+n-(n+1);
4.1-2:34+...4n-(n+1)-(n+2).
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1.0:55. (4) Prove that the following identity holds for all positive integer n:
\/ﬁ§1+i+...+i<2\/ﬁ.
V2 vn
1.0.56. (6)

Show that for all positive integer n > 6 a square can be divided
into n squares.

Ay, Ay, ... are logical statements. What can we say about their
truth value if
(a) AiAYReN A, = A7

1.0.57. (5)

(b) IfAiAVneNA, = (An+1 AN An+2)?
() If Ay AVR €N (Ap V Apy1) = Apia?
(d) Ifvne N -A, = 3k € {1,27...,77,—1} A7
1.0.58. (4) Prove that
1+ ; + + 1 <3 l
2.v/2 7 n-yn T N

Fibonacci Numbers
1.0.59. (6) Let u,, be the n-th Fibonacci number (ug = 0, uy = 1, us = 1,
U3:2, ’LL4:37 U5:57 U6:8, )

(a) up +ug + ...+ ugy =7
(b) ur +us + ...+ ugpt1 =7

o —

1.0.60. (6) Prove that u2 — , _1up+1 = +1.

1.0.61. (3) Let u,, be the n-th Fibonacci number. Prove that

1
—-1,6" <wu, < 1,77
3 u

1.0.62. (5) Prove that any two consecutive Fibonacci-numbers are co-prime.
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1.0.63. (5)

1.0.64. (6)

Prove that

2 2
U+ F U, = UpUpgq-

Express the sums below in closed form!

1. ug+us + ...+ usp;

2. ULU + ... + U2p—1UN -

1.0.4 Solving Inequalities and Optimization Problems
by Inequalities between Means

1.0.65. (6)
Show that

1.0.66. (3)

1.0.67. (2)

1.0.68. (4)

1.0.69. (3)

1.0.70. (8)

Let a,b > 0 and r, s be positive rational numbers with r +s = 1.

a” - b® <ra-+ sbh.

Prove that if a,b,c > 0, then the following inequality holds

a? v 2
A )
be + ac+ ab —

x2 1
Prove that —— < —.
oV 1+a% =2
4
Let a,b > 0. For which z is the expression minimal?

2

Let a; > 0. Prove that

a1 az an—1 An,
— 4+ —+...+ +—2>n
a2 as Gnp a1

Which one is the greater? 1000001000900 or 1000000000001
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1.0.71. (4) Suppose that the product of three positive numbers is 1.

1. What is the maximum of their sum?
2. What is the minimum of their sum?
3. What is the maximum of the sum of their inverses?

4. What is the minimum of the sum of their inverses?

1.0-72- (4) ] What is the maximum value of zy if z,y > 0 and (a) z+y = 10;
(b) 22 + 3y = 107

1
1.0.73. (2) Prove that 22 + — =2ifz#0.
x

1.0.74. (4) Which rectangular box has the greatest volume among the ones

with given surface area?
Solution—

3b2c if a, b, ¢ are non-negative

1.0.75. (4) What is the maximum value of a
and a + 2b + 3¢ = 57

1.0.76. (3) Prove that the following inequality holds for all a,b, ¢ > 0!
Gybilsy
b ¢ a
ECas) Calculate the maximum value of the function z2 - (1 — ) for
x € [0,1].

(Solution— )

Prove that the cylinder with the least surface area among the
ones with given volume V is the cylinder whose height equals the diameter

of its base.
(_Solution— )

1.0.78. (6)

1 n
1.0.79. (5) Prove that n! < (n;r > .

(Solution— )
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1.0.80. (6)
[0,1]?

3

What is the maximum of the function 3 — 25 on the interval

1.0.81. (6) What is the greatest volume of a cylinder inscribed into a right

circular cone?

1.0.82. (6) What is the greatest volume of a cylinder inscribed into the unit
sphere?
LU ) Prove that for any sequence a1, as, . . ., a, of positive real numbers,
i e v e e S - < 2(a1+az+.. +ay)
1 1 1 1 T T T i 1 atas+...+ay).
o ar Ta w tata ar Tay Tt A

(KéMaL N. 189., November 1998)

1.1 Real Numbers
1.1.1 Field Axioms

1.1.1. (4) Using the field axioms prove the following statements:
If ab=0, then a =0 or b = 0;

lloil&h (&) Using the field axioms prove the following statement: (—a)(—b) =
ab.
1.1.4. (4) Using the field axioms prove the following statements:
1. (a+b)(c+d) =ac+ ad+ be+ bd,

2. (—x

~

y=-—z-y.
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1.1.5. (5) Prove that if * is an associative binary operation, then any
bracketing of the expression aj * as * ... * a, has the same value.

1.1.2 Ordering Axioms

1.1.6. (4) Using the field and ordering axioms prove the following state-

ments:
1. If a < b, then —a > —b;
2. Ifa>07then%>0;

3. If a < band c <0, then ac > bc.

1.1.7. (3)
|a| + [0].

Prove that for any real numbers a, b we have |a| — |b] < |a —b| <

1.1.8. (4) Using the field and ordering axioms prove that Va € R a? > 0.

1.1.9. (5) Show that no ordering can make the field of complex numbers

into an ordered field.

1.1.10. (4) Define a rational function (a function which can be written as the
ratio of two polynomial functions) to be positive if the leading coefficient of
its denominator and numerator have the same sign. Prove that this ordering
(r > q & r — q positive) makes the field of rational functions into an ordered
field.

Related problem: 1.1.12

1.1.11. (4)
1
a

Using the field and ordering axioms prove that a < b < 0 implies

< -<0.

S =

1.1.3 The Archimedean Axiom

1.1.12, {6) Does the ordered field of rational functions satisfy the Archimedean

axiom?

Related problem: 1.1.10
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1.1.13. (7) Given an ordered field R and a subfield Q show that if

(Va,b € R) ((1<a<b<2):((3q6@) (a<q<b))>,

then R satisfies the Archimedean axiom.

In which ordered fields can the floor function be defined?
Answer—

1.1.14. (5)

1.1.4 Cantor Axiom

LLLo (@) Does the ordered field of rational functions satisfy the Cantor

axiom?

Related problem: 1.1.10

1.1.16. (5) Answer the following questions. Explain your answer.

1. Can the intersection of a sequence of nested intervals be empty?
2. Can the intersection of a sequence of nested closed intervals be empty?

3. Can the intersection of a sequence of nested closed intervals be a one-
point set?

4. Can the intersection of a sequence of nested open intervals be non-
empty?

5. Can the intersection of a sequence of nested open intervals be a closed
interval?

1.1.17. (8) Using the Cantor axiom give a direct proof of the fact that the

subset of irrational numbers is dense in the real line: every open interval
contains an irrational number.

1.1.18. (4) Which axioms of the reals are satisfied for the set of rational

numbers (with the usual operations and ordering)?

Does there exist an ordered field satisfying the Cantor axiom and
not satisfying the Archimedean axiom?

1.1.19. (9)
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1.1.20. (1) Describe the negation of the Archimedean and the Cantor axiom

(do not start with negation!).

1.1.21. (2) Describe the intersection of the following sequences of intervals:
LIy=[-13  2Li=(34), 3 Li=[5+n3+n),
4.In:[2_%a3+%]7 5.In:(2_%73+%)7 6'1":[2_%’3—’_%)7
7.1, = [Oa %]7 8. I = (Oa %)’ 9. I, = [0’ %)’ 10. I, = (07 %]

1.1.5 The Real Line, Intervals

1.1.22. (3) Prove that v/2 is irrational.

1.1.23. (4) | prove that

Va1
1. v/3 is irrational; 2. % is irrational; 3. —25 +3 15 is irrationall

1.1.24. (3) Let a,b € Q and ¢, d be irrational. What can we say about the
rationality of a + b, a 4+ ¢, ¢+ d, ab, ac and cd?

1.1.25. (3) Prove that there is a rational and an irrational number in every

open interval.

1.1.26. (2) How many (a) maxima (b) upper bounds of a set of real numbers

can have?

1.1.27. (2) Determine the minimum, maximum, infimum, supremum of the

following sets (if they have any)!
1. [1,2], 2. (1,2), 3. {:neNt} 4. Q, 5 {%+ ﬁ :
ne Nt}
6. {/2:n e Nt} 7.{z:2€(0,1)NQ}, 8. {2+ +:nkeNt}
9. {Vn+1—-yn:neNt} 10. {n+ 1 :ne Nt}
1.1.28. (2)

Are the following sets bounded from above or from below? What
is the maximum, minmimum, supremum and infimum? Which set is convex?

0 {1,2,3,...} {1,-1/2,1/3,-1/4,1/5,...} Q@ R
1,2) (2,3  [1,2)U(2,3]
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1.1.29. (2) Let H be a subset of the reals. Which properties of H are

expressed by the following formulas?
1. (Vz e R)(3y € H)(z < y);
2. (Vze H)(Jy e R)(z < y);

3. Vxe H)(Jy € H)(z <y).

1.1.30. (3) Let AN B # (. What can we say about the connections among
sup A, sup B and sup(A U B), sup(AN B) and sup(A \ B)?

1.1.31. (3) Which subsets H C R satisfy that
(a) inf H < sup H; (b) inf H = sup H; (¢) inf H > sup H?

1.1.32. (5) What are the suprema and infima of the following sets?

a {%|n € N}

b) {{In € N} {0).

¢) {xln e N}U{=|n € N}.

d) {;%In e N} U{2,3}.

) {95 n € N} U [—-6,—5] U (100, 101).

[©)

Let H, K be non-empty subsets of the real line R. What is the
logical connection between the following two statements?

a) sup H < inf K;

b)Vxe HIye K z <y.

1.1.34. (4) Let a, =vn+ 1+ (—1)"y/n.

inf{a,|n € N} =?

1.1.35. (5) Let A, B be subsets of the real line R such that AU B = (0,1).

Does it imply that

infA=0 or inf B=0 ?

1.1.36. (7) Prove that all convex subset of R are intervals.
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1.1.6 Completeness Theorem, Connectivity, Topology
of the Real Line

1.1.37. (7) Does the ordered field of the rational functions satisfy the com-

pleteness theorem: all non-empty set has a supremum?
(Hint— ) ( Solution— )

Related problem: 1.1.10

1.1.38. (6) Prove that if an ordered field satisfies the completeness theorem,

then the Archimedean axiom holds.

Prove that if an ordered field satisfies the completeness theorem,

then the Cantor axiom holds.

Define recursively the sequence z,11 = z, (mn + ) for any x;.

1.1.39. (6)

1.1.40. (9) N
Show that there is exactly one x; for which 0 < x,, < 2,41 < T for any n.
(IMO 1985/6)

1.1.7 Powers

1.1.41. (6) | p. e that (a®)¥ =a™ if a>0and z,y € Q.

1.1.42. (6) Prove that (14+2)" <1+4+rzifreQ,0<r <1land z> —1.

Can z¥ be (ir)rational if x is (ir)rational and y is (ir)rational
(these are 8 exercises)?

1.1.43. (6)






Chapter 2

Convergence of Sequences

2.1 Theoretical Exercises

2.1.1. 3) Suppose 0 < a,, — 0. Prove that there are infinitely many n for

which a,, > an4, forall r=1,2,....

0 < a, <1 for all n € N. Does it imply that a]> — 07
Suppose that as, — B, ag,+1 — B. Does it imply that a,, —
B?
2.1.4. (3) Does .
3 fan —2

imply a,, — 27

2.1.5. (3) Prove that x, — a # 0 implies lim **+ = 1.
2.1.6. (4) Prove that if y,, — 0 and Y = lim % exist, then y € [—1,1].
2.1.7. (2)

Let a, be a sequence of real numbers. Write down the negation
of the statement lim a,, = 7 (do not start with negation!).

2.1.8. (4) Show that the sequence a,, is bounded if and only if for all
sequences b, — 0 the sequence a,b,, also tends to 0.

2.1.9. (4) Give an example of a sequence a,, — oo such that Vk =1,2,...

(antk — an) — 0.

31
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2.1.10. (4) An41

Give examples of sequences a,, with the property — 1
such that "
1. a,, is convergent; 2. a, — o0;
3. an — —00; 4. a,, is oscillating.
2.1.11. (5) Suppose that a, b, — 1, a, +b, — 2. Does it imply that a,, — 1,
b, — 17
2112, () Show that every convergent sequence has a minimum or a max-
imum.

2.1.13. (3) Prove that a, > 0 and a,, — a implies \/a,, — /a.

2.1.14. (3) Show that every sequence tending to infinity has a minimum.

2.1.15. (3) Show that every sequence tending to minus infinity has a maxi-
mum.
Related problem: 2.1.12

2.1.16. (2) Prove that a,, — oo implies that /a, — oc.

2.1.17. (3) Suppose that a,, = —oo, and let b, = max{an, @nt1,anio,- ..}

Show that b,, — —cc.

Ll ) Is it true that if x,, is convergent, y, is divergent, then x,y, is
divergent?
2.1.19. (3)

Let a,, be a sequence and a be a number. What are the implica-
tions among the following statements?

a)Ve >03IN Vn >N |a, —a| < e.

b) Ve > 03N Vn > N |a, —al > e.

¢) Ie>0VYN Vn>N l|a, —a| <e.

d) Ve >0 VN ¥n > N |a, —al <e.

e) I >0V0<e<e'INVYR> N |a, —a| <e.

2.1.20. (3)

a) a, — 1. Does it imply that a? — 17

b) a, > 0,a, — 0. Does it imply that /a, — 07
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¢) ap > 0,a, — a > 0. Does it imply that /a,, — 17

d) ¢pd, — 0. Does it imply that ¢,, — 0 or d,, — 07

2028 (D ] Gpow that  Loap > a < (an—a) =0, 2 an —

0 < |a,| — 0.
2.1.22. (1) Show that lim, ., a, = 0o <= VK € R only finitely many
members of (a,,) are smaller than K.

2.1.23. (2) Show that if Vn > ng a, < b,, and a,, — oo, then b,, — co.

2.1.24. (4) Give examples showing that if a,, — 0 and b,, — +00, then a,b,

is critical.

2.1.25. (1) | Spow that if a, — 0 and a, # 0, then A oo

2.1.26. (3) Which of the following statements is equivalent to the negation

of a, — A? What is the meaning of the rest? What are the implications
among them?

1. For all € > 0 there are infinitely many members of a,, outside of (A —
g, A+e).

2. There is an € > 0 such that there are infinitely many members of a,
outside of (A —¢, A +¢).

3. For all € > 0 there are only finitely many members of a,, in the interval
(A—g,A+e).
4. There is an € > 0 such that there are only finitely many members of a,,

in the interval (A —¢, A +¢).

2.1.27. (3)
V2?

Is there a sequence of irrational numbers converging to (a) 1, (b)

2.1.28. (3) Give examples such that a, — b, — 0 but a,/b, /4 1, and
an /by — 1 but a, — b, 4 0.

2.1.29. ) | prove that if (a,) is convergent, then (|a,|) is convergent, too.

Does the reverse implication also hold?
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2.1.30. (3) Does a2 — a? imply that a,, — a? And does a> — a3 imply that
an — a?
2.1.31. (4) Consider the sequence s,, of arithmetic means
aq + . + Qp
Sp=—""""—
n

corresponding to the sequence a,,. Show that if lim a, = a, then lim s, =
n—roo n—roo

a. Give an example when (s, ) is convergent, but (a,) is divergent.

2.1.32. (5) a1+a2+...+anﬁoo

n

Prove that if a,, — oo, then
Related problem: 2.1.31

2.1.33. (5) Prove that if Vn a, > 0 and a,, — b, then /ajas...a, —b.
Related problem: 2.1.31

2.1.34. (4) Consider the definition of a,, — b:

(Ve > 0)(3no)(Vn > ng)(lan, — b| < ).

Changing the quantifiers and their order we can produce the following state-
ments:

1. (Ve > O)(EI’I’LO

2. (Ve > O) (Vno

4

- ( )
- )
3. (Fe > 0)(Inog)
. (3ng) (Ve > 0)
)

5. (Vng)(Ze > 0)(In > ng

Which properties of the sequence (a,) are expressed by these statements?
Give examples of sequences (if they exist) satisfying these properties.

2.1.35. (4) Consider the definition of a,, — oo:

(VP)(Ing)(Vn > ng)(a, > P).

Changing the quantifiers and the orders we can produce the following state-
ments:
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5.

6. (Vno)(3P)(In > ng

Which properties of the sequence (a,) are expressed by these statements?
Give examples of sequences (if they exist) satisfying these properties.

2.1.36. (4)

Construct sequences (a,) with all possible limit behavior (con-

vergent, tending to infinity, tending to minus infinity, oscillating), while

Ap41 — Gn

2.1.37. (3)

2.1.38. (3)

— 0 holds.
Prove that if a,, — oo and (b,,) is bounded, then (a, +b,) — .

Prove that if (a,) has no subsequence tending to infinity, then

(an) is bounded from above.

2.1.39. (4)

Prove that if (a2,), (a2n+1), (asn) are convergent, then a,, is

convergent, too.

2.1.40. (3)

2.1.41. (4)
2.1.42. (4)

2.1.43. (3)

Prove that if a,, = a > 1, then (a?') — cc.

n

Prove that if a,, — a, with |a| < 1, then (al?) — 0.

Prove that if a,, — a > 0, then /a,, — 1.

Prove that if (a, + b,) is convergent and (b,,) is divergent, then

(ay) is also divergent.

2.1.44. (3)

Is it true that if (a, - by,) is convergent and (by,) is divergent, then

(an) is divergent?

2.1.45. (3)

Is it true that if (a,/b,) is convergent and (b,,) is divergent, then

(an) is divergent?
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2.1.46. (3) Let limy, o0 apn, = @, limy,_, o0 b, = b. Prove that max(a,,b,) —

max(a,b).

2.1.47. (4) Let aj, # 0 and p(x) = ag + a1z + ... + axz®. Prove that

1
lim Ln+ )

=1.
n—-+oo p(n)

Show that if a,, > 0 and ap41/a, — ¢, then /a, — q.

2.1.48. (4)

2.1.49. (4) Give an example of a positive sequence (a,) for which /a,, — 1,

but a,+1/a, does not tend to 1.

2.1.50. (5) There are 8 possibilities for a sequence, according to monotonicity,

boundedness and convergence. Which of these 8 classes are non-empty?

2.1,51. (5) Assume that a,, — a and a < a,, for all n. Prove that a,, can be

rearranged to a monotone decreasing sequence.
Hint—

The sequence (a,) satisfies the inequality a, < (ap—1 + ant1)/2
for all n > 1. Prove that (a,) cannot be oscillating.

2.1.52. (6)

2.1.53. (6) Prove that if (a,) is convergent and (a,11 — a,) is monotone,

then n - (ap4+1 —a,) — 0. Give an example for a convergent sequence (a,,) for
which n - (@41 — ay) does not tend to 0.

—~

2.1.54. (4) Prove that if the sequence (a,) has no convergent subsequence,

then |a,| — oo.

Prove that if the sequence (a,,) is bounded and all of its convergent
subsequences tend to b, then a,, — b.

2.1.55. (5)

2.1.56. (4) Prove that if all subsequence of a sequence (a,) have a subse-

quence tending to b, then a,, — b.

2.1.57. (4) Does anp4+1 — a,, — 0 imply that ag, — a,, — 07



2.2. ORDER OF SEQUENCES, THRESHOLD INDEX 37

2.1.58. (4) Give examples such that a,, — oo and
1. asp, — a, — 0; 2. ap2 —a, — 0 3. asn — a, — 0.
2.1.59. (5) Prove that every sequence can be obtained as the product of a
sequence tending to 0, and a sequence tending to infinity.
2.1.60. (5) Assume that a,, — 1. What can we say about the limit of the
sequence (al')?
2.1.61. (5)

How would you define 0°, oo® and 1*°? Explain it.

2.2 Order of Sequences, Threshold Index

2.2.1. (3)

2.2.2. (5)

Prove that

n(n+1)
2

1 1 1 < 2
22 33 T opn n+1

Prove that n" ™ > (n+ 1)" if n > 2.

Related problem: 2.6.8

2.2.3. (8)

Prove that
V248V <41

224 () Prove that 2" > n* holds for all sufficiently (depending on k)
large n.
2.2.5. (5) . :
Prove that the following two statement are true for n big enough.
1. 2" > n3, 2. n% — 6n — 100 > 8n + 11
2.2.6. (5)

Find an n, € N such that Vn > n, the following statements hold:

1.n2 — 15n+124 > 14512n, 2. n® — 16n2 + 25 > 15n + 32162,
3. (1.01)" > 1000, 4. n! > nd.
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2.2.7. (5) Find an n, € N such that Vn > n, the following holds:
1. (1.01)" > n, 2. (1.01)" > n?, 3. (1.0001)" > 1000 - /n,
4.100" <nl b L < 2N 637 —1000-2" > nd+100n2,

TRl —yva>Lt o gl (H)E 9n(2)" >al> (2)"
2.2.8. (4) Find an n, € N such that Vn > ng the following holds:

L.vn+1—yn<0.1 2.v/n+3—+/n<0.01
3.vn+5—+vn+1<0.01 4. vVn?+5—n <0.01.

2.2.9. (4) Prove that the sequence a1 = 1, a,41 = a, + -= has a member

which is greater than 100.

2.2.10. (4) Prove that for the sequence a; = 1, ap41 = an + = we have

a10001 > 100 (see the 2.2.9 exercise and its solution.)

Related problems: 2.2.9, 2.5.19
2.2.11. (5) Determine the limit of the following recursively defined sequence!
a1 =0, any1 = 1/(1+an) (n: 1,2,...).

Using the definition calculate the limit (if exists) of the following
sequences. Give a threshold index to e = 107!

1/vn; (1"

2.2.12. (2)

2.2.13. (4) Using the definition calculate the limit (if exists) of the following

sequences. Give a threshold index to ¢ = 106!

2n+1

il Vn24n+1—vn2—n+1

2.2.14. (4) Using the definition calculate the limit (if exists) of the following
sequences. Give a threshold index to € = 1074, to P = 10° and to P = —106.

1+2+...
et tn +2 +n; n? —n3; n(vVn+1—+n); sinn

n
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2.2.15. (4) Find an ng € N such that Vn > ng the following holds:
1.n%2 >6n+15 2.n%>6n—15 3. n3 > 6n% + 15n + 37
4. n% > 6n2 —15n+ 37 5.n% —4dn +2 > 6n% — 15n + 37
6. n® —4n? +2 > 6n% — 15n + 37
7.n% +4n% — 2 > 6n3 + 15n — 37.

2.2.16. (4) Find an ng € N such that ¥n > ng the following holds:
L2n>nt, 2 (1+3)m>2 3.1,0">100, 4. 1,01" > 1000;
5.0,9" < 1455 6. ¥2<1,01,  7.vn+1-yn<qk,

8. vn?2+5—n<0,01, 9. n7 > 100n°,
10. n® +n3 — 10n% > n® + 1000n.

2.2.17. (4) Calculate the limit of the following sequences and find an ng
threshold for € > 0.

L1y 2@ndD)/(nkl); 3. (5n—1)/(Tn+2); 4. 1/(n—y);

5. (1+...4n)/n?% 6. (WVI+V2+...+/n)/n*3,
7.n-(\/1+(1/n)—1>; 8. vVnZ+1++vn2—1-—2n;

R R S T WL ST I S
' ’ 12723 T n=1)-n

2.2.18. (4) Find an ng threshold for P for the following sequences.
1. n—/m; 2.1+...4+n)/n 3. (VI+V2+...+n)/n;
n? —10n
4, —; 5. 2™ /n;
10n + 100’ /n
2.2.19. (5)

Prove that there is an N natural number such that Vn > N the
following inequality holds:

3 n
(2> > n2.

Find an N natural number such that Vn > N the following
inequality holds:

a) 10"+ 11" +12" < 13™;  b) 1.01" > n; ) Vn+vn +2+vn +4 <n®L

2.2.20. (5)

2.2.21. (4) Find an N natural number such that Vn > N the following
inequality holds: 1.0001™ > n'09,
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2.2.22. (4)

Find an N natural number such that Vn > N the following

inequality holds:

1 < 10n?
n—>5y/n = 2" —100

2.3 Limit Points, liminf, limsup

2.3.1. (3)

Find a non-convergent sequence with exactly one limit point.

2.3.2. (1) Given ay,...,ap € R, find a sequence with exactly these limit
points.
2.3.3. (2) o :
Calculate the limit points of the sets B(0,1), B(0,1), N, Q and
{1/n:n e N}!
2.3.4. (5 Prove that the set of limit points of a sequence (or a set) is
closed.
Zeids () Find a sequence such that the set of limit points of it is [0, 1].
2.3.6. (6) Prove that a limit point of the set of limit points of a set is a
limit point of the original set.
2.3.7. (2) What are the limit points, limsup and liminf of the following
sequences?
, no 1
Vn; (1) +5 {v/n}
2.3.8. (2) What is the limsup and liminf of the following sequence?
nk
ap = —.
277,
2.3.9. (4)

lim sup a,,.

Using the definition of lim sup and lim inf prove that lim inf a,, <
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2.3.10. (4)
then

Prove that if (a,,) is convergent and (b,,) is an arbitrary sequence,

lim(a, +b,) = lima,, + limb,,.

2.3.11. (3) Prove that if a,, — a > 0 and (b,,) is an arbitrary sequence, then

m(QTL . bn) =a- mbn and

lim(a, - b,) = a-limb,.

2.3.12. (5) Prove that if
(i) ap, = a > 1 and (b,) is bounded, then

i al,’L" =a"™b% and lim al,’f = qlimbn,

=

(ii) an, — a <1 and (b,) is bounded, then

afl" = a0  and  lim af{" = glimon,

A

2.3.13. (4) Prove that if the sequence (a,) is bounded with liminf a, > 0

and b, — 0, then a’» — 1.

2.3.14. (5) Prove that for an arbitrary sequence of real numbers a1, as, ...

ay +as+...+an
n

lim inf > liminf a,,

and

. art+as+...+ay .
lim sup < limsup a,.
n

2.3.15. (5) Prove that if a,, — a, then

inf { sup{an, Gnt1,ant2,...} 1N E N} =aq.
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2.4 Calculating the Limit of Sequences

2.4.1. (1) Guess the limits, and prove using the definition:
Llim G5 =2 2 qim L =?
3. lim 31y =7 4. limb™ =7 for 0 < b < 1.
2.4.2. (2) Guess the limit, and prove using the definition:
lim — =7
2n
2
1
2.4.3. (2) Determine the limit of - : — an for all values of a.
n
2.4.4. (3) Determine the limit of v/n?2 — n + 1 — an for all values of a.
2.4.5. (3)

Prove that ¥/2 — 1.

I

2.4.6. (4) Calculate lim,, oo V2" — n.

2.4.7. (4) Guess the limits, and prove using the definition:
n
lim — =7
n!
2.4.8. (3)
. n?+6n®—2n+10
lim =7
—4n — 9n3 + 1010
2.4.9. (3)

lim VIt +7vn =?
Iny/n + 3

2ol () Calculate the following:

lim =7
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2.4.11. (5) Calculate the limit of the sequence ¥/n.
2.4.12. (4) Calculate the limit of the sequence ¥/nl.
2.4.13. (4) Calculate the limit of the following sequences.
n® —n?+1
1o 2. 4 2 _p? 3. V6™ — 57,
305 — 20t 1 8’ e

2.4.14. (4) Calculate the limit of the following sequences.

1+log2\"
L3 24/t s (+og> 4 Y27 Fn
n

5 Y1+24+3+...+n 6. V1n +27 437 + ...+ 100"
7 n2+(n+2)3 n1002n+3n

8.
n2 —/(n2 +1)(n* +2) (VA" +1 =27 +nd) (57

2.4.15. (4) Calculate the limit of the following sequences.

3n+ 16 1 1 n2+1
R 2n-[J1+--1 3. .
in — 25’ " <\/Tn ) n M1

. 2 3
it U O e o (U Ve TR
n 1—n3
_ 2 1 n
o Wmr—gm, 10 ) gy DT,
n 8n
2.4.16. (4)

Calculate the limit of the following sequences.

+6_8)

5 — 2n?
44n’
2™ + n!
n" — 11000’

6n + 2n? - (—=1)"
n? )

7_66 55_ -1 3 2 — 1
L "/2n+\/ﬁ7 o n® +5n° —n 7 3 1 +n?/n—n+

nd+n?+n+1

2n3 —6n++n—2"

1 2
4. 7/=-=
n n?’
V2n + 1 1 ™ 7"
5. vV 2"-'—3", . 77‘74_, 7 logi, 8. o L =’
V3n +4 n+2 ™7
9 (2n +3)5 - (18n + 17)%5 10 V4n? + 2n + 100 1 Vn3 + 6
' (6n +5)20 ’ "ot — 2 +2’ " /m?+3n -2
2" 4 5"
12.n-(VaF I-vim), 13212 14. n-(v/n? +n—v/n2 —n).

3n 41’
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2.4.17. (4)
li ! :
m —— " =
n(m - TL)
2.4.18. (4)
4 1 3n+2
lim( nt ) =7
4n + 8
2.4.19. (4) | [t a0
lim V/n 4+ a™ =7
2.4.20. (7) Is the sequence
S S :
convergent?
2.4.21. (4)
lim =
2n +1
2.4.22. (5) Is
sin1 . sin 2 N n sinn
- ...
2 22 2"
convergent?
2.4.23. (4) Calculate the following:
lim(ﬂ-%-%'~-~' 2%> =
1.4-8c
2.4.24. (4) Is
Convergent?
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2.4.25. (4) Calculate the following

lim /2" + sinn.

I I

2:4.26. ) | (Calculate the following

Yo

) n!

lim —.
n

2.4.27. (4) Calculate the limit of the following sequences.

6nt +2n2 - (=1)"

1 A ;2 Vnrr24Vn2 -2
n n _5n
3. ?, 4. n-(Vn?+n—vn2—n).
2.4.28. (5)

Suppose that ai,ao,...,ar > 0. Calculate the limit of the
sequence {/a} +aj +...+aj.

2.4.29. (5) Calculate the limit of the sequence ( n+/n+n— \/ﬁ>

2.4.30. (4) ] [ la], |b] < 1.

l+a+a?+...4+a"

i
T e

=?

2.4.31. (4) Calculate:

1. lim VIZ+ 27 + 37 + ... +nn =7

) 1 1 1
2. lm {1+ -+ +...+— =7
n

2 3
X n2 (7’L + 2)3 —
3. lim I T =7

n! (n?+1)(n* +2)
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2.4.33. (4)

lim ’{/1+\/§+€/§+...+ {/n =?

2.5 Recursively Defined Sequences

2.5.1. (2) Let a3 =1 and apq41 = 1+ 1% Prove that a,, is monotone

an

increasing.

2.5.2. (3) Study the sequence a; = 0.9 Apy1 = Qp — a%. Is it monotone?

bounded? Does it have a limit?
2.5.3. (4) Let a; = 0.9, ap41 = a, —a. Is there a member of the sequence
which is smaller than 10%?

2.5.4. (4) Define the sequence (a,, )2 by the recursion
2a,
= 10 = :
aj ) an+1 (7% + ].

(a) Prove that the sequence is bounded by giving explicit upper and lower
bounds.
(b) Prove that a,, — 1. Check the definition and find ng for all ¢ > 0.

2.55.(3) ) [

T =1, T+l = VOTn.
Is x,, convergent? If yes, what is the limit?

2.5.6. (3) Study the sequence a1 =0, an+1 = 2+ ay. Is it monotone?

bounded? Does it have a limit?
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2.5.7. (3) Determine the limit of the following recursively defined sequences!

l.a; =0, apt1 =1/(2—a,) (n=1,2,...);

);
);
4oa1 =V2, app1 =V2 a, (n=1,2,...);

2.a1=0, apy1=1/d—a,) (n=1,2,...
( .

3. a1 =0, ap41 =1/(1+an) n=12..

2.5.8. (6)

— % Prove that z,, — VA.

xn—&—i
Let A>0,21 =1and 41 = 5

—~

2.5.9. (3) Let o1 = 1, 2,41 = /T, + 2. Prove that

(a) The sequence x,, is monotone increasing;
(b) The sequence z;, is bounded;
(c¢) The limit of the sequence x,, is 2.

2.5.10. (4) Let 21 =1, 241 = . . Calculate the limit of xz,,.
— 1,
2.5.11. (4) Let ap = 0,a1 = 1, and ani2 = aﬁ% (n =0,1,2,...).
lima,, =7
2.5.12. (2)

Let a; = 100, @41 = v/a, + 6. Prove that
(a) the sequence a,, is monotone;

(b) the sequence a,, is bounded.

(c) What is the limit of the sequence a,?

2.5.13. (4)

1
Let ay = 1 and a1 = a, + —oo if n > 1. Is this sequence
a'ﬂ

bounded? If yes what is the limit?

2.5.14. (4) Define the sequence (x,)52; by the following recursion: let

T = 3\/5, and x4 =

if n > 1. What is the limsup of the sequence?

—
2.5.15. (5) B C2a,
Let a1 = 10 and An+1 = m lim Qp, =7
2.5.16. (5) Does the sequence
an + a%
ap =1, Opt1 = T

converge? If yes, then what is the limit?
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2.5.17. (5) Determine the limit of the following recursively defined sequence!
a1 =0, apt1=1/(4d—a,) (n=1,2,...);

2.5.18. (3) Let the sequence (a,,) be given by the following recursion: a; = 0,
an+1 = Va, + 6. Prove that (a,) is convergent and calculate its limit.

2.5.19. (4) . Prove the existence of an n € N,

Let a1 =1, apq1 = an +

for which a,, > 10.

a2
a’?’L

Related problem: 2.2.10

2.5.20. (2) Let a3 =1 and a1 = v/2a, + 3. Prove that a, < apy1 Vn €
N.
2.5.21. (4)

Let a; = 1,

Ap+1 = Gy + -
n

Is it true that 3n a, > 10107

2.6 The Number e

2.6.1. 3) | pLove the following inequality:
1 n
(1 + ) > 2.
n
2.6.2. (5) Prove the following inequalities:
(o) <mee ()
= nl<e-(=] .
e 2
2.6.3. (7)

Prove the following inequalities.

1\" 3
0<e—<1+> < —.
n n
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2.6.4. (5)

Prove that

1 n+1 1 n+2
<1 " ) > <1 + ) ,
n n+1

in other words the sequence a,, = (1 + %)n—H is strictly monotone decreasing.

2.6.5. (5)

2.6.6. (9

2.6.7. (5)

we have n! <

2.6.8. (6)
1.2-3
2.6.9. (7)

for all n € N.
2.6.10. (4)

2.6.11. (4)

Prove that for all n € N we have n! > <

Prove that

1
n+1< eltatta < 3n.

) 1"
Which one is greater? The number e or (1 + > ?
n

n+1
e

) ,and forn > 7

nn+1

Which one is the greater? 1000001000090 or 1000000100000

Find positive constants ¢y, ¢y for which

nn-‘r% nn-‘r%
<nl<ey-

e en en

Calculate the limit of the sequence

(=)
a, = .
n+1

Calculate:

3n+8
3
lim (n + ) =7
n—1
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2.6.12. (7) Verify that if n - a,, — a and b, /n — b, then (1 + a,)’" — €.

2.6.13. (7) Prove for every sequence (ay,):

1\ . an
lim inf (1 + > _ liminf 2
n

2.7 Bolzano—Weierstrass Theorem and Cauchy
Criterion

il () The sequence a,, is monotone and it has a convergent subsequence.

Does it imply that a,, is convergent?

2.7.2. (5) Prove that if |a, 41 —ay| < 27" for all n, then (a,,) is convergent.

2.7.3. (8) Prove that if the Bolzano—Weierstrass theorem holds in an ordered

field, then it is isomorphic to R.

2.7.4. (8) Prove that if in an Archimedean ordered field every Cauchy

sequence is convergent, then every bounded set has a least upper bound.

2.7.5. (8) Prove that every Cauchy sequence is convergent, using the one-

dimensional Helly theorem.

2.8 Infinite Sums: Introduction

2.8.1. (4)

= 1
2w

n=1

2.8.2. (5)
(oo}
1

Z 2_3 1:?
—_n - n+§
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3)

N
%
w
—

—~

2.8.4. (3

~—

Convergent or divergent?

100

n
Z 1.001"

Convergent or divergent?

1
2 (2i —1)(2i+ 1)

2.8.5. (2)

oo
>(3+w)~
i=1

2.8.6. (5) Prove that
=1
> <2
n=1
2.8.7. (2) Suppose that Y a, is convergent. Show that lim(a, 1 4+ ant1 +
oot anz) =0.
2.8.8. (4)

Find a sequence a,, such that Y a, is convergent, and a,+1/a,

is not bounded.

2.8.9. (6)

2.8.10. (6)

Convergent or divergent?
Z (2k)!
4k (k)2

Convergent or divergent?

2k)! 1
2. 4F(EN2 2k + 1
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2.8.11. (7)

(@)
[\

2.8.12. (4)

2.8.13. (3)

2.8.14. (5)

2.8.15. (5)

2.8.16. (7)

2.8.17. (5)

convergent?

2.8.18. (4)

For which z € C is the following sum convergent?

DOECIND Dkt

Convergent or divergent?

1000 = 1000 -1001 1000

n

>
n2

-1001 - 1002

1 + 1-3
Convergent or divergent?

> 1
a) ) n(n+1)(n+2)

n=1

Convergent or divergent?

o0

1-3-5

KD IYCEa

n=1

> (v

n=1

Show that if |ap+1 — an| < %,

hn := 3.1, +. Prove that

1=

SRR
R R

For which x and p is the sum

T n

np

Convergent or divergent?

2

nh?

then (a,) is convergent.

< 2.

n
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2.8.19. (4) For which « is the sum

xn

2oty

convergent?

2.8:20- (5) | (4) Prove that if lim inf

1

1

a

lo o .
oz > 1, then >~ ay is convergent.

o s log .
(b) Prove that if lim sup 3= <1, then }_ ai is divergent.

(c) Construct a sequence a,, such that

(d) Construct a sequence a,, such that

2.8.21. (4) ] Ror which o the sum

Zlog(

is convergent?

log -

ajp
oer- — 1, and >~ ay convergent.

k+1
k

log —
log

1

2 — 1, and ) ay, divergent.

)






Chapter 3

Limit and Continuity of
Real Functions

3.1 Global Properties of Real Functions

3.1.1. (2) Show that the following functions are injective on the given set

H, and calculate the inverse.
1. f(x) =32 -7, H=R; 2. f(x) =2%>+ 3z — 6, H=1[-3/2,00).
3.1.2. (2)

Show that the following functions are injective on the given set
H, and calculate the inverse.

z x
f(.%‘) x+17 [ ) ]7 f(.%‘) |£E|+17
3.1.3. (7) Find a function f : [~1,1] — [~1,1] such that f(f(z)) = —x Vz €
[—1,1].
3.1.4. (4) Construct a non-constant periodic function with arbitrarily small
periods.
2/ SR
3.1.5. (1) Find the inverse of f(z) = v on R\{%}
3x — 2
3.1.6. (2) | e the following functions injective on [—1,1]?
€T X
a) f("”):m’ b) g(x) = ST

95
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Prove that all function f : R — R can be obtained as the sum of
an even and an odd function.

3.1.8. (2)

3.1.7. (2)

Let

23 if x rational

f(x):{ 3

—z> if z irrational.
Does f(x) have a unique inverse on (—oo, +00)?

3.1.9. (4) Let f(z) = max{x,1 — x,2x — 3}. Is it monotone, or convex?

3.1.10. (2) Prove that if f is strictly convex on the interval I, then every
line intersects the graph of f in at most 2 points.

3.1.11. (1) Does there exist a function f : (0,1) — R which is bounded, but

has no maximum?

3.1.12. (2) Does there exist a function f : [0,1] — R which is bounded, but

has no maximum?

3.1.13. (4) Does there exist a monotone function f such that

L. D(f) =[0,1], R(f) = (0,1);
2 D(f) = [07 1]7 R(f) = [Oal] U [2,3]§
3. D(f) = [07 1]) R(f) = [Oal) U [2’3];
4 D(f) = [07 1]) R(f) = [Oal) U (273]?

3.1.14. (8) Does there exist a function which attains every real values on

any interval?

3.1.15. (5) Prove that x* is strictly convex on [0, 00), for all k > 1 integer.

3.1.16. (3) Prove that if ay,...,a, > 0 and £ > 1 is an integer, then

ai +...+an, < rjaf + ...+ ak
n - n '

3.1.17. (4)

Prove that if g : A — B and f : B — C are convex, and f is
monotone increasing, then f o g is convex.

3.1.18. (4) Prove that if f is convex, then it can be obtained as the sum of

a monotone increasing and a monotone decreasing function.
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3.1.19. (7) Can we obtain the function 22 as a sum of two periodic func-
tions?

3.1.20. (10) Can we obtain the function 2 as a sum of three periodic func-
tions?

3.2 Continuity and Limits of Functions

3.2.1. (2) Find a good § or L for € > 0 or for K for the following functions.
. 2 . . sin(x)
1. il_l)r{l_i_(.% +1)/(z—1), 2. wl;rr;o 7
3.2.2. (2)

Determine the points of discontinuity of the following functions.
What type of discontinuities are these?

23— 22—
Li@ =T 200 =
1 5 1
3. hi(z) = 9:[;}, 4. hy(z) =z [;]
3.2.3. (3)

Determine the points of discontinuity of the following functions.

What type of discontinuities are these?

1 w1 9 L
(= 1D(z—2)(x—3)’ ' [%]

3.2.4. (2)

Determine the points of discontinuity of the following functions.
What type of discontinuities are these?

) )= 52 b)g(x)zsgn({i}).

3.2.5. (2) . B . L B
Prove that ilirz flz)=b = ngln_of(x) = lgﬂof(x) =0.
3.2.6. (1) Define: limg,_,— f(x) = —o0, lim,_, _ f(x) = b and

lim, o f(z) = +o0.

I

3.2.7. 1) Formulate the negation of lim,_,, f(x) = 400!

3.2.8. (1) Prove that the function [z] is continuous in « if @ is not an integer,

and left-continuous if a is an integer.
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3.2.9. (2) In which points are the following functions continuous?

z if L X if =
1.f(x):{ fglceN7 2.f(x):{3 +7 if z€Q

0 if 1¢N 4a if 1¢Q’
2?2 if >0
3. f(x) = - .
/(@) {cm if <0
3.2.10. (2) Where are they continuous?
1. Riemann-function, 2. sin —, 3. xsin —.
T x
3.2.11. (2)

Prove that if f : R — R and g : R — R are continuous and
f(a) < g(a), then a has a neighborhood, where f(z) < g(z).

3.2.12. (2) Let f be convex in (—o0,00) and assume that lim f(z) = co.
T——00

Is it possible that li_>m f(z) = —o0?

3.2.13. (2) Let f be convex in (—o0,00) and assume that hm flz) =
Is it possible that li_>m f(z) = —oc0?

3.2.14. (1)

Find a monotone function f : [0,1] — [0, 1] with infinitely many
points of discontinuity.

3.2.15. (3)

by:
(Ve > 0)(30 > 0)(Va)(|Jz —a| < d = |f(z) — f(a)] <e).
Consider the following variations of this formula.
(Ve > 0)(Vo > 0)(Vx)(|Jz —a| < d = |f(x) — f(a)
(e > 0)(V6 > 0)(Va)(|Jz — a| < d = |f(z) — f(a)
(Fe >0)(30 > 0)(Vz)(|Jx —a|l < d = |f(x) — f(a)
(V6 >0)(Fe > 0)(V)(|Jz —a| < d = |f(z) — f(a)
(30 > 0)(Ve > 0)(Va)(|Jz —a| < d = |f(z) — f(a)] <e).
Which properties of f are described by these formulas?

3.2.16. (1)

The continuity of the function f : R — R at the point a is defined
|
|
|
|

Formulate the definition using the letters ¢, 0, P, @ etc.:
li =1; li t)=0; i =-
i f=1; - lim s(t)=0;  lm g(¢) = —oc

lim h(9) =o00;  lim wu(¢)=2.
9——1

§——o0
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8.2.17. (1) Formulate the definition using the letters €, J, K, L etc.
limf=o00; lm s(n)=2 lim g(z)=—oo;
lim s(w)=2; limg=1; limh=1.
w—wg— 0+ s
3.2.18. (2)

Prove that if f and g are continuous in the point a, then max(f, g)
and min(f, g) are also continuous in the point a.

3.2.19. (2)
fx)?
3.2.20. (7)

Does the continuity of g(x) = f(2?) imply the continuity of

Assume that g(z) = tlim f(t) exists in every point. Prove that
—T

(Hint— )

g(x) is continuous.

3.2.21. (3) Find an f and ¢ such that ggr; flz) = B, 9}%9(%) = 7, but
lim g(f(x)) # .

3.2.22. (2) Can we extend (v/x —1)/(z — 1) to = 1 continuously?

3.2.23. (3)

Prove that if f : R — R is periodic and lim,_,~ f(z) = 0, then
f is identically zero.
3.2.24. (2) Prove that a function f : R — R is continuous if and only if the
preimage of every open set is open.
3.2.25. (7) Prove that if a function R — R is continuous in every rational
point, then there is an irrational point as well where it is continuous.
3.2.26. (8) Suppose that the function f : R — R is continuous, and f(n-a) —
0 for all @ > 0. Prove that lim f =0.
xr—r0o0

3.2.27. (2) In which points is the following function continuous?

sini ifz#0
f(x)_{o iz =0
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3.2.28. (2) In which points is the following function continuous?

fla) = {xsini ifx#£0

0 ifx=0
3.2.29. (2) In which points is the following function continuous?
SR e
3.2.30. (3)

Prove that if f : [0,1] — R is continuous, then g(x) := min{f(x), 0}
is also continuous.

3.2.31. (8) What is the cardinality of the set of continuous R — R func-
tions?

3.2.32. (7) Is there an R — R function for which the limit is co at every
point?

3.2.33. (2)

lim ({%}2 - 4{x}2) =7 Tm ({2x}2 - 4{z}2) =7

3.3 Calculating Limits of Functions

3.3.1. ()
. v _q
lim Sy =7 lim € =7
z—0 X x—0 X
3.3.2. (5)
lim 710g(1 +2) =7
x—0 x
3.3.3. (4)
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3.3.4. (4)

3.3.5. (4)

3.3.6. (4)

3.3.7. (4)

3.3.8. (4)

3.3.9. (4)

3.3.10. (4)

3.3.11. (4)

3.3.12. (4)

sin 3x

im — =7
z—0 sin dx
. 1—cosx
lim ———— =7
x—0 xz

o VT +H13-2yx+1
lim =

?
z—3 2 -9

Jr—642 L

1m -
r——2 3+ 8

lim (\/z+\/z+Vz—Vz) =7
Tr—r 00
1in%)(sin Va +1—sinyz) ="
T—

. V1—cosz?
lim —m— =7
z—0 1 —cosx

o sin(a + 2z) — 2sin(a + z) + sin(a)

=7
3 !

T—a €T

sin(x — %
lim 7( 3) =7

z—=% 1 —2cosx



D
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3.3.13. (5)
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. 2sin’z +sinz — 1
lim

=7
=% 2sin?z — 3sinz + 1
3.3.14. (5) Lot

o= (55) ™

limg o f(x) =7, lim,—; f(x) =7, lim, o f(x) =7
3.3.15. (4)

log(1 + €2
807

rT—>—00

=7
T
3.3.16. (5)
2 _ a2
o T smar:7r = o
3.3.17. (6)
lim (Si'nx)m—a _9
z—a \8in a
3.3.18. (6)
4221
lim ( T+ 2 ) _o
z—1/2 \2x — 1
3.3.19. (6)
lim w -7
z—oo 1+ Vx + Yz
3.3.20. (3)
() lim sin e* _9 (b) lim T+ sinx o
T—00 €T

z—00 /2 +1 o
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3.3.21. 3) Calculate the limit at the given a of the following functions.

L fx)=[z], a=2+0; 2 f(z)={a},a=2+0;
X T 1
3.f(x):2967_1,a:oo; 4.f(x):m7a:§+0;
x

5-f(x):% a = o0; 6.f(1:):$27

—7 a=1-0.

7. f(x) =Vo+1—Vr, a=o; S.W,a:oo;

2
vt 5246 = 00; 10. 2*[1/“5], a = 00;

s«
224+ 6x+5
11. Va3 +1 -2, a = oo, 12. 2{1}, a =0,

13. z[1], a =0,

3.3.22. (3)

3.3.23. (3) Calculate the following limits:

VT F2- Y2 +20
1. lim
=7 Jr+9-—2
o Va1

. lim
r—1 51‘—1

3. lim z- [\/x2+2x—2\/x2+$+x}

T—r 00

5 Jiy L= D= VO = V) (1= )

z—1 (1—ax)"

6. lim x + sin(x)
T—>00

3.3.24. (3) Prove that

ar+b 00 if bc—ad >0
im = )
em—dt cr+d —oo if bc—ad <0,



64 3. LiMiT AND CONTINUITY OF REAL FUNCTIONS

ar+b —oo if be—ad >0
im =
a——d- cr+d 0 if bc—ad <0,

and
im ar+b «a (c£0)
= — c .
z—doo cx +d c’
3.3.25. (3)
V2o VT +2— Y +20
lim =7 lim =7
z—=1 ™ — 1 =7 Jr+9-2
N
3.3.26. (4) Let a > 1 and k > 0. Prove that lim A 00.
r—00 I
3.3.27. (4)
VAT g3 =2
lim ——— =7
% (3/5)°
3.3.28. (5)
lim ( C— ) =7
z=1\2" -1 z2m -1
3.3.29. (5)

2100 — 22 4+ 1 _

lim &~
z—=1 290 — 22 41

3.4 Continuous Functions on a Closed Bounded
Interval
3.4.1. 3) Let f : R — R be continuous and periodic. Does it imply that
f(x) is bounded?

S (G (Brouwer fixed-point theorem; 1-dimensional case.) All f :

[a,b] — [a,b] continuous functions have a fixed point, i.e., an x, for which

flz) ==
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3.4.3. (3) Let f :[0,1] — [0,1] and g : [0,1] — [0,1] be continuous and
f(0) > ¢(0), f(1) < g(1). Prove that there exists an = € [0,1], such that
f(x) = g(x).

3.4.4. (4)

Let f :]0,2] — R be continuous, f(0) = f(2). Prove that the
graph of f has a chord of length 1.
3.4.5. (5) e .
Prove that if I is an interval (closed or not, bounded or not, might
be a point) and f : I — R is continuous, then f(I) is also an interval.

3.4.6. (4) Prove that every polynomial of odd degree has a real root.

3.4.7. (4) Prove that the polynomial 2° — 322 — z + 2 has 3 real roots.

3.4.8. (6) Prove that the continuous image of a compact set is compact.
3.4.9. (4) Prove that if f : [a,b] — R is continuous and x1, xa, ..., x, € [a,b],
f@) +-- + fan)

then there is a ¢ € [a, b], for which f(c) = .
n

3.5 Uniformly Continuous Functions

3.5.1. (4) Are the following functions uniformly continuous?
a) 22 on (1,2),
b) sinz on R,
c) sin% on(0, c0),
d) 1/z on (0,2),
e) v/z on (0,00).

3.5.2. (4) f,9 : R — R are uniformly continuous. Does it imply that f - g

is also uniformly continuous?

3.5.3. (4) Prove that if f: R — R is uniformly continuous on R, then the
function f(x +5) — f(z) is bounded.

3.54. (5) Let f : [0,1) — R be continuous. Prove that f is uniformly

continuous if and only if %if% f exists and is finite.
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3.5.5. (8) Let K C R. Prove that if all continuous K — R functions are

uniformly continuous, then K is compact.

3.6 Monotonity and Continuity

3.6.1. (2) Prove that if I is an interval and f : I — R is continuous and

injective, then it is strictly monotone.

3.6.2. (8) Is it true that if for the function f : R — R we have Vx €
R f(z —0) < f(z) < f(x +0), then f is monotone increasing?

3.7 Convexity and Continuity

3.7.1. (5) Prove that if f : [a,b] — R is convex, then lii%f and %ingf exist

and are finite, moreover hfé f < f(a) and iinaf < f(b).
3.7.2. (4) Is it true that if f : R — R is concave, then lim f < oo or
—00

lim f < 007
o0

3.7.3. (4) Is it true that if f : R — R is convex and l_imf = —o00, then

lim f = c0?

3.7.4. (6) Prove that if f is weakly convex, then

f<x1+...+xn> - f(x1)+~.~+f($n)'

n - n
3.7.5. (4)

Is it true that if f : R — R is concave and lim f is finite, then f
—0o

is monotone decreasing?

3.7.6. (4) Prove that if f: R — R is additive, then f? is weakly convex.

3.7.7. (4) Prove that if f : R — R is strictly monotone increasing and

convex, then f~! is concave on the interval (inf f,sup f).
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3.8 Exponential, Logarithm, and Power Func-
tions

3.8.1. (7) Prove that if f : R — (0,00) is continuous and for all z,y € R

the equality f(z+vy) = f(z)- f(y) holds, then f is an exponential function.

3.8.2. (1) Which one is greater? 519873 or 3108757

3.8.3. (5) Suppose that ¢ > 0, and log ¢ is convex. Prove that ¢ is convex

and show that the reverse implication does not hold.

1
3.8.4. (3) Prove that lim oer 0 and lim z-logz = 0.
3.8.5. (4)
1~ x :‘7 1' & :7
Jim, o A Ve

3.8.6. (7) Prove that for the reals 0 < a < b the equality a® = b® holds
if and only if there is a positive number z for which a = (1 + %)z and
3.8.7. (6)
1 xr
lim (1—1— ) =7
z—+0 T
3.8.8. (6) Prove that if 0 < z,  # 1, then logx <z — 1.
1
3.8.9. (6) Prove that if 0 < 2 < 1, then log(z) > 1 — —.
T
3.8.10. (7) Find reals a,b such that for all [z| < 3 we have 1 + z + az? <
e® <1+ x+ bz
3.8.11. (7) Find reals a,b such that for all |z| < % we have 2 + az? <
log(1+ z) < z + bz
3.8.12. (5)
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3.8.13. (4

—~
~—

Prove that if z > 0, n € N, then

. ~ Qik
k=1 "

—~

3.8.14. (4

~—

o2 =V 41
lim ————— =7

z—00 /76 4+ 2 — g

3.8.15. (4)
. A2P+ 34
lim ——— =7
T— 00 1\?*
(-3
x
3.8.16. (4)
lim 6log xz/(log | log x|) =9
r—40
1 1 1
3.8.17. (5) Prove that log(n + 1) < 1+ 3 + 3 +...+ — < (logn) +1.
n

3.9 Trigonometric Functions and their Inverses

3.9.1. (5) (a) Prove that for x # km we have
3] 2
cosz + cos 3x + cosbHx + ... + cos(2n — 1)z = bm_ iy
2sinx
(b)
sinx + sin2x + sin3x + ... + sinnx =7
3.9.2. (5) Prove that for all non-negative integer n there are polynomials
T, (x) and U, (z) of degree n, such that
i 1)t
Tn(cost) =cosnt, and U,(cost)= sm(@i—:)’
sin

and
Tht1(z) = 22T (x) — Th—1(x) and Upyi(z) = 22U, (x) — Up—1(x)
(the so-called Chebishev polynomials.)
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3.9.3. (6) (a) Express sinz and cosx using only tan x.

(b) Express sinx and cos x using only tan 3.

(c) Express sinx and cos x using only cot 3.






Chapter 4

Differential Calculus and
its Applications

4.1 The Notion of Differentiation

4.1.1. (2) Assume that f : (a,b) — R is differentiable, lim,_; f(z) = oco.

Does it imply that lim,_,;, f'(x) = c0?

4.1.2. (2)
/
<sin <Si1/1;)> =?
4.1.3. (3)
a) (@7 =? b) ((sina)7)” =7
4.1.4. (3) Where is the function
2 ifre Q
flz)= 2
—z° ifxgQ
differentiable?
4.1.5. (2)

Let f : R — R be differentiable, lim,_,., f = 1. Does it imply
that lim,_,o, f/ = 07 And if we also know that lim,_,., f’ exists?

71
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416- ) ] Where is the function ({z} - %)2 differentiable?
417 3) ] Where is the function f(z) = I\% differentiable? What is the
z
derivative?
4.1.8. (3)

Let f(z) = 2% if x <1 and f(z) = ax + b if z > 1. For which
values of a and b will f be differentiable?

4.1.9. (4)
9'(0).
4.1.10. (3) Prove that the function f(z) = v/ is differentiable for all a > 0

and f'(a) = 1/(2/a).
4.1.11. (3)

Let f(x) =x-(x+1)--- (x+100), and let g = fo fo f. Calculate

Assume that f: R — R is differentiable everywhere. Prove that
if f is even, then f’ is odd and vice versa.

4.1.12. (7) Let [a,a + ) C D(f). Put the following quantities in increasing

order:

7 / r—— T p/ . 77 . ’
fi(a)  fi(a) lim f lim /7 }anéf Ejﬂéi

4.1.13. (2) Calculate the derivative:

2
1
—x; 323 — 22 + 1, %312; (210 4 2% + 1)1,
(1,3 + 1)77,
2

4.1.14. (2)

Calculate the derivative:

1
1
@+1ie-o* 'ty
3 4+ 2 2—x
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4.1.15. (3)
Calculate the derivative:

sin 2° etan® log,(cot? z) arc tan(z? + 1)

sin (ar cosh (arc cos(logs m)))

4.1.16. (2) The following functions are derivatives. For which functions?

J,‘2

1
1 2. .
+x + 2% x—l—x, @17

4.1.17. (3) 8x + cos x is strictly monotone increasing. What is the derivative

of its inverse in 17
4.1.18. (10) Does there exists a monotone R — R function which is not
differentiable at any point?

4119 () ] ot f(a) = o2 -sin(1/2), f(0) = 0. Prove that f is differentiable
everywhere.

4.1.20. (4) Prove that z* is differentiable for all x > 0. Calculate the
derivative!

4.1.21. (3)

2 is strictly monotone increasing in [1, c0). What is the derivative
of its inverse in 277

4.1.22. (3) x5 + 22 is strictly monotone increasing in [1,00). What is the
derivative of its inverse in 27

4.1.23. 3) Prove that = + sinx is strictly monotone increasing in [1, c0).
What is the derivative of its inverse in 1 + (7/2)?

4.1.24. (4) Find a function f(x) for which f/(0) = 0, and not differentiable

at any other points.

4.1.25. (6) Prove that if f/(gj) 2 ﬁ’ then h*{n f(l') = 00.

4.1.26. (4) Prove that if f/(x) = 22 for all x, then there is a constant ¢ such
that f(x) = (23/3) +c.
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4.1.27. (5) Prove that if f/(z) = f(z) for all z, then there is a constant c,
such that f(z) =c-e®.

4.1.28. (4) Prove that if f(a) = g(a) and for > a we have f'(z) > ¢'(v),
then f(z) > g(z) for all z > a.

4.1.29. (3) Calculate the derivative of the following functions.

1
2% logypw  —=; ¢ +3logr 2?3

8
L&

T
z%-logz - 3% -cosx

VI - S5

sinx

8

N
~— &

xz3e® cos x; z - <

4.1.30. (3) What is the derivative of the inverse function of z° + 22 at the

point —27

4.1.31. (4) Find a function f such that lim f’(z) =0, but lim f(x) # 0.
T—00 T—00

4.1.32. (4) Assume that La-flx), 2. f(x%), 3.f3%)
is differentiable at 0. Does it imply that f(x) is differentiable at 07

4.1.33. (3) Prove that if f(a) = g(a) and f(z) < g(x) in a neighborhood of
a, then f'(a) = ¢'(a).

4.1.34. (5) Calculate the derivative of the Chebishev polynomials at 1:
T =1 Uy =

4.1.35. (3) Calculate the derivative of the following functions.

210g z/2

ptan + ar cothz

x
coshz x4+ 3z

2 _a%+4cos z?

T

®

1Ogcoth2 z+1 cot

tan z V- 107
22+ 1 logzx+ xcotx
(z +1)(z* + 2°) cos =
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4.1.36. (4) | |

x4 222 -sinl if z #0,
fla) = v f
0 if x =0.

Show that f/(0) > 1, but f is not monotone increasing in any neighborhood
of 0.

4.1.37. (3)
(f(x)g(r))’ —9 (logf(x) g(x))/ =7

4.1.38. (2) Calculate the derivative of both sides of the identity

1— gntl
l+z+2’4.. . fa2"=—"— (x #1).

1—=x

4.1.39. (5) Is there a function f: R — R such that f'(x) = oo for all x?
4.1.40. (6) Find an everywhere differentiable function with a non-continuous
derivative!
Check the Darboux theorem for the derivative!
4.1.41. (5)

Is it true that if f is continuous in @ and lim,_,, f/(z) = oo, then f'(a) = co
o

4.1.42. ()

Assume that f : (a,b) — R is differentiable and lim, f(z) = cc.
Does it imply that lim, f/(z) = oo?

4.1.43. (3)
Calculate the derivative!

1. sin (Si;‘f)7 2.z, 3. (sinz)cos ™,

4.1.44. (4) Suppose that f is differentiable and | f'| < K. Then f is uniformly

continuous.
4.1.45. (4)
Prove that the graph of the function
¥ if x>0
f(x)_{o it 2=0

is tangent to the y-axis.
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4.1.46. (5)

4.1.47. (5)

‘ 3

3
=?
n

w

0o
n=1

Prove that if f is differentiable at a, then

Show that the statement cannot be reversed.

4.1.1 Tangency

4.1.48. (3)
sect?

4.1.49. (4)

4.1.50. (4)

In what angle do the graphs of the functions sin and cos inter-

Does the function v/sinz have a vertical tangent line?

Prove that the line y = max + b is tangent to the graph of z2 if

and only if they intersect in one point.

4.1.51. (3)

4.1.52. (4)

—~

4.1.53. (3

~—

4.1.54. (5)

Which horizontal line is tangent to the graph of 22® — 322 4 8?
At which point is the z-axis tangent to the graph of 3 +px+¢?

At what angle does the line y = 22 intersect the graph of 22?

Prove that the graphs of \/4a(a — z) and /4b(b + z) intersect

each other perpendicularly.

4.1.55. (6)

Prove that the graphs of 22 — y? = @ and zy = b intersect each

other perpendicularly.

4.1.56. (6)

Prove that the graphs of ax = 22 +y? and by = 2 + y? intersect

each other perpendicularly.

4.1.57. (6)

Prove that the graphs of 22 — 3zy? = a and y3 — 32%y = b

intersect each other perpendicularly.

4.1.58. (4)

At what angle do the graphs of 2% and (7w — €)* intersect?
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4.2 Higher Order Derivatives

4.2.1. (5) Is it true that if f"/(x) = f(z) for all z € R, then f(z) = c- e

for some ¢ € R?

4.2.2. (4) Is it true that if f is 7 times differentiable on R, lim,_,_ f(z) =5

and lim,_,~ f(z) = 3, then f has an inflection point?

4.2.3. (6) Is it true that if f is 2 times differentiable at a, then
. f(a+2h)_2f(a+h)+f(a)_ " 2
M 2 BN
4.2.4. (6)

Find a differentiable function f which is equal to 2z for x < 0,
and equal to 3z for z > 1. Is there a 2 times differentiable function? And a
271 times differentiable function?

4.2.5. (5) Calculate all derivatives of
ar+b
fla) = cx+d
4.2.6. (2) Let f(z) = Cicosx + Cysinz. f"(z) + f(z) =?
4.2.7. (2)

Calculate the following derivatives:
1 (@) ), 2 (=) ), 3. (") 0.

4.2.8.(5) | Accume that f e C>(0,00), limgyo f = lims f = 0. Prove that
I >0: f(§)=0.

4.2.9. 3) How many times is the function |z|? differentiable at 07

4.2.10. (4) Find a function which is £ times differentiable at 0 but not k£ +1
times.

4.2.11. (4) How many times is the function |z|* differentiable at 0 if & > 07

4.2.12. (5) Assume that f and g are n times differentiable at the point a.

(a) Prove that fg is also n times differentiable at the point a.
(b) (f9)™(a) =7
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4.2.13. (5) Prove that

(1 — 2T/ (x) — 2T (x) + n*T), () = 0.

4.3 Local Properties and the Derivative

4.3.1. (5) (a) Prove that if f is convex, then the left and right derivatives

exist at every point.

(b) Prove that if f is convex, then f! is monotone increasing.

4.3.2. (2) Let D(f) =[0,1], f(z) = 27(1 — 2)°. What are the zeroes of f'?

What is the minimum and maximum of f?

4.3.3. (6) Prove that if ¢ € (—1,1) is a local extremum of the Chebishev
i 1)t
polynomial of second type U, (U,(cost) = M), then
sin
n+1

Un(a)| =

Vit DR - )+

4.34.(4) )

B $4-(2+sin%) if #0
f(@{o it x=0.

Show that f has a strict local maximum at 0, but f’ does not change its sign
at 0.

4.4 Mean Value Theorems

4.4.1. (4) Using the Lagrange mean value theorem prove that if f is differ-
entiable on R and f’ is bounded, then f is Lipschitz.

4.4.2. (5) Using the Lagrange mean value theorem prove that if f/(a + 0)

exists, then f, (a) also exists and they are equal.



4.5. EXERCISES FOR EXTREMAL VALUES 79

4.4.3. (9) Let a1 < as < ...<a, and by < by <...<b, be real numbers.
Show that
ealbl 6a1b2 L. ea/lb'n,
6a2b1 eazbz . ea2bn
det . . . . > 0.
ea;lbl ea/*r.le . ea;lbn

(KéMaL A. 463., October 2008)

4.4.1 Number of Roots
4.4.4. (3)

Prove that the function z° — 5z + 2 has 3 real roots.

4.4.5. (3) Prove that the function 7 + 822 + 5z — 23 has at most 3 real
roots.

4.4.6. (5) At most how many real roots does the function 26 + ax + b
have?

4.4.7. (4)

For which values of k does the function z® — 622 + 9z + k have
exactly one real root?
4.4.8. (8) o .
At most how many real roots does the function e* + p(x) have if
p is a polynomial of degree n?

4.5 Exercises for Extremal Values

4.5.1. (2) Which of the right circular cones inscribed into the unit sphere

has the greatest volume?
4.5.2. (2) . .
Calculate the extremal values of the following functions on the

given interval!

1. 2?2 — % [-2,2]; 2. x —arctanz; [—1,1]; 3.x+e*; [—1,1];
4.z + 272 [1/10,10]; 5. arctan(1/x); [1/10,10]; 6. cosz?; [0,7];
7. sin(sinx); [—7/2,7/2]; 8. x-e % [-2,2]; 9. 2™ - e "; [—2n,2n];
10. z—log x; [1/2,2]; 11. 1/(1+sin® z), (0, 7); 12.V1 — e=7%; [-2,2];
13. z - sin(log x); [1,100]; 14. z%; (0, 00); 15. ¢/x; (0,00);

16. (log ) /x; (0, 00); 17. z-log x; (0, 00); 18. 2% (1—z)17%; (0,1).
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4.5.1 Inequalities, Estimates

4.5.3. (4) Prove that
sinx + siny §sinx+y (z,y € [0,7]) !
2 2
4.5.4. (4) Prove that on the interval (0,7/2) we have tanz > x + L;
4.5.5. (6) Prove that for all z > 0 we have
x
— < log(1 <.
T3 < og(l+xz)<w
4.5.6. (4) Prove that for all z € [0,1] we have
4.5.7. (4) Prove that |arctanz — arctany| < |x — y| for all x,y.
4.5.8. (5) Let x < 0 and n positive integer. Which one is the greater? e*
Lt x? z"
. o
4.5.9. (9) Prove that if a > 1 and 0 <z < Z, then Sl?ax < ae~ T
sin x

4.5.10. (9) Prove that for all positive integer n and x > 0 we have

(), ) () )

- + - +(—1)" 2 >0
Voo V¥l Vr+2 JVr+3 (=1) Vr+n

2
4.5.11. (4) Prove that cosz > 1 — %
4.5.12. (5) Prove that ,

cosx < e /2,
ifo<z < 3.
4.5.13. (7) Let |z] < g Which one is greater, ST o e=v?/29
T
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xT
4.5.14. (4) What is the range of the function = — £ (x e R\ {0}?
x

4.5.15. (10) | | o p(z) = 2" + ap_12" ' 4+ ... 4 a1z + ag be a polynomial

with real coefficients and n > 2, and suppose that the polynomial (z — 1)*+1
divides p(z) with some positive integer k. Prove that

n—1 2

2%
> lael > 14+ =—.
n

£=0

CIIM 4, Guanajuato, Mexico, 2012

4.5.16. (5) Let 0 < x,y < w. Which one is greater: sin ,/zy, or \/sinz - siny?

4.6 Analysis of Differentiable Functions

4.6.1. (4) Analyze the following functions!
1. e_l/‘l”Q7 2. 2 (without convexity), 3. x+e %, 4. sin(sin z),
5. 32 — a3, 6. %;—;i, 7. log(1 + 2?), 8. 23 — 3z, 9. 22 — 2*,
10. = — arctan x, 11. z + e 7, 12. = + 272, 13. arctan(1/x),

14. cosx?, 15.sin(sinz), 16.sin(1/z), 17.x-e7%, 18.z —logz.

4.6.2. (4) Analyze the following functions!
L1/(1+sin’z), 2. (1+1)", 3. 1+ 4 Vi—e = 5.7,
6.2 Yz, 7. (logz)/z, 8 z-logz, 9.2% (1—2)'7% 10.arctanz— 3log(1+

z%), 1l arctanz — %5, 12. 24/(14+2)3, 13.¢%/(1+x), 14.¢%/sinhz,

15.e77%. [1 7 sinx — %COSI .
4.6.3. (4) Analyze the following function:
a) iizz b) log(1+ 2?).
4.6.4. (4) Let f(z) =a"-e . f((0,00)) =7
4.6.5. (4) e’

Analyze the following function: 1.2
—x



82 4. DIFFERENTIAL CALCULUS AND ITS APPLICATIONS

4.6.6. (4) Analyze the following function: %a: —arc tanzx.

4.6.1 Convexity

4.6.7. (3) Suppose that f : R — R is convex, f(5) = 12 and a =
lim, 00 f(2). What are the possible values of a?
4.6.8. (6)

In how many points can the graphs of two convex functions
intersect? And a convex and a concave?

4.6.9. (4) Find the maximal intervals for which the following functions are

convex or concave.

1. €%, 2. logz, 3. |z, 4. 2% (a € R), 5. a% (a > 0)
6. sinz.
4.6.10. (5)

f:(a,b) = Ris convex, ¢ : f(a,b) — R is convex and monotone
increasing. Prove that in this case 1 o f is also convex.

4.6.11. (4) Is it true that the inverse of a convex function is concave?

4.7 The L’Hospital Rule

4.7.1. (3)

(2 1
Jim @) =1,
x—0 €T

4.7.2. (3)

. T\ _ —z
lim cos(ze*) — cos(ze ™) _9
x—0 1‘3

4.7.3. (3) Calculate the following limits using L’Hospital’s rule!
1. lim :osac , 2. lim zV®.

ToT/2 5 — T z—0+
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4.7.4. () Calculate the following limits using L’Hospital’s rule and also
using the Taylor polynomial!
1. lim w7 2. lim M7 3 lim cos(we®) —[005(33@_‘7”)
@0 z? z—0 x z—0 3
1 3 1 5 _ 1 5 -
4 tim LEVEHYE o (4@ - (45n) o coszoc
=0 1+ o+ V 20 x2 4 25 z—0 z*

esinz — z(1 + )

)

8
vl

7. lim

z—0 3
4.7.5. (2) Calculate the following limits using some known derivatives.
cos®z + e* — 2 ) sinh
_ im ——
=0 x 20 log, (1 + )
4.7.6. (3)
52
. sindz . logcosax . sin x
lim =7 lim ————— =7 lim =?
z—0 tan 5z z—0 log cosh bz =0\
in
lim ((a: —1)tan E) =7 lim 2208T o
r—1 2 T—00 x

Can we use the L’Hospital rule? Can we use the definition of the derivative
at 0 (or 1)7

4.7.7. (3)
267 4 ¢ — 3
im — ¢ te - =7 lim 277 =?
z—0 sin 2z + z2 + sinh x T—1
lim (2 —2)' F =7 fim 22 TS0T
z—1 z—00 200 — COS &

Can we use the L’Hospital rule? Can we use the definition of the derivative
at 0 (or 1)?

0
anything

4.7.8. (4)

Can we use the L’Hospital rule for type limits?

4.7.9. (4) Assume that f, g are k times differentiable, lim |g| = oo, g¥) # 0

and lim % = . Does it imply that lim L= B2
co 9 0o 9
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4.7.10. (4)
| . 1 + em cotx
ili)l%)log(l_mz)(cob bl’) =7 ‘%’% <]_—|—COS£L') =
2 coth(z?) — cot(1 — cosz)
250 log(l+ ) —sinx N
4.7.11. (4)
lim (z — 1)°822 =2 lim (cosh x)COtz t=?
z—1 z—0
4.7.12. (5)
cotx — —
i —— 9

z—0 3% — coshz

4.7.13. (5)

4.7.14. (5)
cothx — cotx

250 log(l+z) —x o

4.8 Polynomial Approximation, Taylor Poly-

nomial
4.8.1. (4) Calculate the Taylor expansion of arc tan.
4.8.2. (3) Calculate the Taylor expansion of e* and e(@),
4.8.3. (2) Write the polynomial 1 + 3z + 522 — 222 as linear combination

of powers of x + 1.

4.8.4. (4)

&8
""w

. cosx —e
lim —_— =7
x—0 xX
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4.8.5. (4)

4.8.6. (2)

4.8.7. (5)

Calculate the degree 5 Taylor polynomial of log(cos x).

A=? B="ifcotz = ii‘giz +o(z*).
(A—B)z

cotr — 1/x = S5 +0(?)

4.8.8. (4) Calculate the Taylor expansion at 0.
@) 1ix ) 1}% °) 1—|—12x 4 3+14a: °) ﬁ
2 11+ T
4.8.9. (3)

4.8.10. (3)
4.8.11. (3)
4.8.12. (6)

4.8.13. (3)

z3!

4.8.14. (6)

4.8.15. (5)

,_.
2.
=
8

1.
6. o7

11. sin? x;

Calculate the degree 3 Taylor polynomial at 0:

(14 )00
(1 —2x)40(1 4 2x)80

Calculate the degree 3 Taylor polynomial at 0 for sin(sin ).
What is the leading term of (1 + z)* — 17
Prove that limn (e — (1 + 2)") = .

Calculate the degree 0,1,2,3,4 and 5 Taylor polynomial at 1 for

Prove that e is irrational!

Calculate the Taylor expansion (at 0 if not specified):
2. cos x; 3. arctan x; 4. arcsin x; 5. ﬁ;

7. €e%; 8. eIQ; 9. 173679”2; 10. 1/x, a =1,

12. arc sin .
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4.8.16. (4) For which values of a,b € R does the following identity hold

k
a+b a b
_ ?
(:)-2060)
=0
4.8.17. (2) Prove the binomial theorem using the binomial expansion!
—-1/2\ _ (-1)* [2k
k) 4 \k)~

4.8.19. (5) Prove that for >0

4.8.18. (1) Prove that

T 1’3 N .T5 N .’134n+3 - ) - T 373 N 335 N x4n+1
-t =+ - 0= <snr< =— =+ =+—-... -
11 3" 5l (4n + 3)! 11 35l (4n + 1)
and

562 1,4 586 1,4n+2 1‘2 $4 $6 z4n
-+ ccosa<lo— g .

TR (dn 1 2) =% TR T PP

4.8.20. (6) A
Prove that nl;ngoz o e” for all x € R.

k=0



Chapter 5

The Riemann Integral and
its Applications

5.0.1 The Indefinite Integral

5.0.1. (1)

d
/ T 9 / V1—3z dz =? /(671 +e72H3) dg =7

[eia= JE e (1) e

/xe‘”’ dx =7 /x2 log x dox =7 /tanh2 x dx =7

/\/1—t2 At =7 /\/1+x2 dz =? / dz _,

sinx

87
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5.0.5. (5)

/|ac| dx =7

5.0.6. (4)

5.0.7. (4)

5.0.8. (4)

5.0.9. (5)

5.0.10. (5)

5.0.11. (5)

5.0.12. (4)

5.0.13. (4)

/
/

1 2 1— 2
2% — 1| de =7 VIt tvi-at,
V1—zt

42% — 5zt + 162° — 1922 + 122 — 16
(x —2)%(x* + 422 + 4)

dx =7

x5 + 4zt + 1223 + 1422 + 152 + 12

(z +2)(22 + 3) dw =

22
/7dz:?
V1+x+ 22

/\/3:3—|—a:4 dx =?

dx =7

/x—\/;v2+3x+2
4+ Va2 4+3x+2

/sinx -log(tanx) do =?

/ dx o
14+vV1—2x—22

a,beR.

/ dx 5
asinz +bcosz
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5.0.2 Properties of the Derivative

5.0.14. (5) Find a non-continuous function with an antiderivative.

5.0.15. (4) Which of the following statements are true for any function
f:]a,b] = R?
(a) If f is bounded, then it is Riemann-integrable.
(b) If f is bounded, then it has an antiderivative.
(c) If f has an antiderivative, then it is Riemann-integrable.
(d) If f has an antiderivative, then it is not Riemann-integrable.
(e) If f has an antiderivative, then it is bounded.
(f) f has an antiderivative if and only if its integral-function is an antideriva-
tive.
(g) If f is integrable and its integral-function is differentiable, then the deriva-
tive of the integral-function coincides with f.
(h) If f is monotonically increasing, then its integral-function is convex.
(i) If the integral-function of f is convex, then f is monotonically increasing.
(J
ti

) If f satisfies the Intermediate Value Theorem, then it has an antideriva-

5.1 The Definite Integral

5.1.1. (1) Use the definition of the Riemann integral to compute the integral

over [0, 1] of the function:

) b){o z<1/2

a) x ¢) except finitely many points 0

1 z>1/2

5.1.2. (6) Let 0 < a < b. Determine from the definition ff ™ dx by using

an appropriate partition.

5.1.3. (3) State the necessary conditions and prove

s/ablf-
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5.1.4. (2) Is the following function Riemann-integrable on [0, 1]?
1 ife=L%n=12...
Jx) = {0 otherwise
5.1.5. (2) For a given ¢ find § for which
10
SF) <5 = | e e —seen| <
0
5.1.6. (3) Given ¢ find ¢ for which |I — sp| < e if §(F) < ¢:
. 0 I:l,n:172737"'
a) sinz on [0,27]; b) f(z) = {1 othe:vvise on  [0,1];

¢) sinzU{(0,0)} on [0,1].

5.1.7. (5) Is the Riemann function Riemann-integrable on [0,1]?

5.1.8. (5) Is the following function Riemann-integrable on [0, 1]?

1 _ P _
f(.’IJ): \/6 x_qv(paQ)_17q>0
0 x irrational

5.1.9. () | prove that if lim f = A, then Jim [ f(Hz) de = A.
%0 —00

5.1.10. (1) Find the value of fol fif it exists,

f(:c)Z{l if o € [ ], k=12

0 otherwise.

5.1.11. (4) If f is continuous and

/Olf(a:) dx:/ole(x) dz =0,

then f has at least two different roots in (0, 1).
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5.1.1 Inequalities for the Value of the Integral

5.1.12. (3) If f is bounded and concave down on [a, b], then

(b_a)w < /abf . (b—a)f<a+b)'

2

5.1.13. (5) Assume that f : [0,00) — R is strictly increasing continuous and
f(0) =0, limy, f = co. Let g be the inverse function f. Show that

x Y
wyﬁ/er/g-
0 0

5.1.14. (3) Let p,g >0 and 1/p+ 1/q = 1. Show that for all z,y >0

Pyl
ry < — + —.
p q

5.1.15. (3) ] prove the following:

2
(a) If f,g : [a,b] — R are integrable, then (fab fg) < (f; f2) (f; 92)
(Schwarz inequality).
(b) If f,g : [a,b] — R are integrable and p,q > 0 such that % + % =1, then

1/ 1/
f; fg < (f; \f|p) ! (fab |g|q> ! (Holder inequality).

5.1.16. (5) Prove that 2y < (z +1)log(z + 1) — z 4+ €¥ —y — 1 holds for all

pairs x,y of positive numbers.

5.2 Integral Calculus

5.2.1. (4)

1 1
1
a) / —— dz =? b) / x arctanz dz =?
0 tan$+1 0
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5.2.2. (4)

27 1
/ —— dz =7
o 24cosz

/03x~[x] dx

0.2
1 sh sin x . .
/ o8 ee V1 +sinh®sing dz =?
0

1

5.2.3. (3)

5.2.4. (6)

5.2.5. (5)
sin x
lim Sanw Vtant dt _
0+ [ Vsint da

5.2.1 Connection between Integration and Differentia-
tion

5.2.6. (4)

4 ’

x 3
(/ et sintdt) —7
0

5.2.7. (5) Write down the second Taylor polynomial around 0 of the function

_3_ ,
f(t):/t tez siny/z dx.

2

5.3 Applications of the Integral Calculus

5.3.1. (4) Use Euler-Maclaurin summation to find

a) zn:k's; b) zn:k3(n— k)3.
k=1 k=1
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5.3.2. (4) How much work is required to elevate a mass from ground level
to height h? To h = c0?

5.3.3. (5) What curve is traced out by the centroids of the arc on the

logarithmic spiral r = a-e™¥ (r = a,v = 0) — P as P runs though all points

on the spiral?

5.3.1 Calculating the Arclength

5.3.4. (4) Find the arclength of the arc on the parabola y = 22 that lies

above [0,

S

].

Find the arclength of the curve r(0) = a+acos 9, (0 € [n/4,7/4]).

Prove that the logarithmic spiral » = a - e“?¥ (3 € [0,00)) has
finite arclength.

5.3.5. (3)

5.3.6. (3)

5.4 Functions of Bounded Variation

gl (4 If v : [0,1] — R? is a continuous curve whose image contains

[0,1] x [0, 1], can v be of bounded variation?

Prove that f : [0,1] — R is of bounded variation if and only if it

is the sum of two monotonic functions.

5.4.2. (6)

5.5 The Stieltjes integral

IS
s
<o

¢ ifex <
Let f be continuous, g(z) =< d if z >

IS
T
o

5.5.1. (2)

IS
T
o

e ifx=

/:fdgz?

(V)
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5.5.2. (2) Let f be continuous.

/abf dlz] =?

5.6 The Improper Integral

5.6.1. (6) Are the following improper integrals convergent? Absolute con-

vergent?
a)/1 s;g dz b)/1 sn;x dz c)/1 sin(z?) dz

5.6.2. (5)

Prove that

z"e™® dz =nl.

0

5.6.3. (2)
07

5.6.4. (5)

Suppose that fooo |f| is convergent. Does it follow that lim, f =

Show that if f is uniformly continuous on [2, 00), then

/ 7}‘(:0)2 dx
o z2log”x

is convergent.

5.6.5. (3)

56:6- (2) ] 1 the following integral convergent?

3
5t
/ cos dat
0 t
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5.6.7. (5)
w/2
/ logcosx dx =7
0
5.6.8. (5) For what « is
1
/ (r —sinz)® dzx
0
convergent?
5.6.9. (7)

Is there a continuous function f : R — R for which [/ f is
convergent, but fOOO 2 is divergent?






Chapter 6

Infinite Series

6.0.1. (1) J Show that
L <log(n+1)—1 ()<1
] og(n og(n o
6.0.2.3) | poe
1 1 1
—<l+-+s+...+=—-logn<1
n 2 3
6.0.3. (5)

Prove that

S T I
Qp = gyt Tt ogn

is convergent.

6.0.4. (4)

6.0.5. (4)
3 oty it TG

97
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6.0.6. (4)
1 1 1 n 1 1 1 n 1 1 1 n 5
2 4 3 6 8 5 10 12 -
6.0.7. (4)
1 1 1
ltg—gtytz—gtetg—gt =
6.0.8. (5) Let u,, := 01/" lﬁQ dz. Is the series leun convergent?
6.0.9. (2)
L SIS S S
1-2 23 34 4.5
6.0.10. (4)
Y (1) =
n=0
6.0.11. (4) True or falso%7
(a) If a,, — 0, then > a, is convergent.
n=1
(b) If a,, — 0 and the partial sums ) a, are bounded, then > a, is
n=1 n=1

convergent.

(¢) If > a, is convergent, then a,, — 0.
n=1

6.0.12. (4) Show that if |a,| < # for all positive integer n, then Y a,
satisfies the Cauchy criterion.

n
6.0.13. (8) Let > a, be a divergent series with positive terms. Prove that

n=1
there is a sequence ¢,, of positive numbers, such that ¢, — 0 as n — oo and
n

> (cn - ay) still diverges.

n=1

6.0.14. (4)
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6.0.15. (5)
(o)
>’
n=0
6.0.16. (4) Assume that a,, < b, < ¢, for all positive integer n. Show that
o0 &) o0
if > a, and > ¢, are convergent, then »_ b, is also convergent.
n=1 n=1 n=1
n
6.0.17. (8) Let 3 a, be a convergent series of positive terms. Prove that

n=1
n
there is a sequence (c,,) such that ¢, — 0o asn — oo and for which > (¢, -ay)
n=1

is still convergent.

(oo}
6.0.18. (8) For s > 1let ((s) = > L -, (p1,p2,P3,-..) = (2,3,5,...) be the
n=1
sequence of primes in increasing order.

N
. 1
(a) Prove that A}g H [ ¢(s).
n=1 Pn
1
(b) Prove that ngl o =00.

— 1
(c) What is the order of magnitude of Z —ass— 1407

n=1

6.0.19. (9) For all k € N let Z a'? be a divergent series of positive terms.

Prove that there is a sequence (cn) of positive real numbers such that the

series Z (cn - a't )) are all divergent.
n=1

6.0.20. (3) Determine whether the following series are convergent or diver-
gent. In case of convergence determine whether convergence is absolute or
conditional.

o 00 [n/2 © 4
ZlOn—f—f—kl an Z Z:: n+1 ;ﬁ
6.0.21. (3)

Determine whether the following series are convergent or diver-
gent.

e o _ n2e V7
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S () S

log®n

6.0.22. (5) Assume that a,, > 0, b, > 0 for all n and that a, /b, — 1. Prove

that " a,, is convergent if and only if ) b, is convergent. Give an example
when this fails if the assumption a,, > 0,b,, > 0 is removed.
6.0.23. (2) Prove that if > a, and > b, are absolutely convergent, then the
following series are also absolutely convergent:

dan+by) > max(an,by) Y a+b2

6.0.24. (5) What are the root test, quotient test, Dirichlet-test, and Abel-test

for improper integrals?
6.0.25. (3) Determine whether the following series are convergent or diver-
gent. In case of convergence, determine whether the convergence is absolute
or conditional.

S R N ) R N G U R
T R S Y

n=1 n=1

6.0.26. (4) Determine whether the following series are convergent or diver-

n n? = log n+nloglogn
1 1 n—1\2 "%
1— = 1— =
D 200 Z05)
n

gent.

>

7N

_ 1 1 >
6.0.27. (5) (a) Show that if lim (|an’1°g") < E’ then Zan is abSOIUtely
n=1
convergent.

. =
1°g") > = then Z ay, is divergent.

n=1

(b)Showthatﬁculz()andhglgan

oo
(c) Can any conclusions be made about the convergence of Z an if ap >0
n=1

and lim (|an}$) = 1?
e
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6.0.28. (6) Let } ay(n) be a rearrangment of the conditionally convergent

series Y a,. What can be the set of limit points of the set of the partial sums
n

> Gp(k)?
k=1

6.0.29. (7) Let ay, a9, ... be a sequence of positive reals such that

>0 Vo>2 |{k: ap<a}|>c i
log x

Primes for example satisfy this.) Show that L = 0.
p y an

G0 (9) Prove the Condensation lemma: Let a; > as > --->ap > -+ >
0. Then
o0 o0
Z an convergent <= Z 2ka2k convergent.
n=1 k=1
6:0.31. (6) Convergent or divergent?
>
= nlogn

6.0.32. (6) Let € > 0. Convergent or divergent?

o0

1
22 n(logn)l+e

n=

6.0.33. (4) For which ¢ € R is the series
>
=, n-logn - (loglogn)°
convergent?
o
6.0.34. (5) Using Dirichlet’s criterion show that > sin(na) converges for
n=1 n

all a € R.
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6.0.35. (5) - True or false? -
(1) If nZ::l ap, is convergent, then ngl( {/2 - ay,) is also convergent.
(2) It ij:l ay, is divergent, then il( /2 - a,) is also divergent.
(3) If §1 anis convergent, then il %l is also convergent.
(4) It §1 ay, is divergent, then il 9n is also divergent.
6.0.36. (5) Give examples of an absolutely convergent series io: a, and

n=0

(oo}

conditionally convergent series Y by, for which their Cauchy product is con-
n=0

ditionally convergent.

6.0.37. (5) (Raabe criterion) Let > a, have positive terms.

n=1

a
(a) Prove that if liminf n < o — 1) > 1, then the series is convergent.
Ap+1

(b) Prove that if n ( dn_ _ 1) < 1 for n large enough, then the series is

Gnt1
divergent.
6.0.38. (10) For a sequence A = (ag, a1, as,...) of reals let
SA = (ag,a0 + a1,a0 + a1 + as,...)
be the sequence of its partial sums ag + a3 + az + .... Can one find a non-

zero sequence A for which the sequences A, SA, SSA, SSSA, ...are all
convergent?
Miklés Schweitzer memorial competition, 2007



Chapter 7

Sequences and Series of
Functions

7.1 Convergence of Sequences of Functions

7.1.1. 3) For which values of x do the following sequences converge? On

which intervals do they converge uniformly?

n

n
n/‘xl 177' xn _ xn+1 (1 4 E)
n: n

7.1.2. (4) True or false?

7.1.3. (4) True or false?

(a) A uniform limit of monotonic functions is monotonic.

(b) A uniform limit of strictly monotonic functions is strictly monotonic.
(¢) A uniform limit of bounded functions is bounded.

(d) A uniform limit of continuous functions is continuous.

(e) A uniform limit of Lipschitz functions is Lipschitz.

7.1.4. 3) A sequence of functions fi, fa,...: I — R is uniformly bounded
ifIK eRVYneNVx el |fu(x)| < K.

103
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Prove that the limit of a uniformly bounded sequence of functions is
bounded.

7.1.5. (6) Prove that ((s) is infinitely differentiable on (1, c0).

7.1.6. (5) True or false? If a sequence of continuous functions f, : [a,b] — R
uniformly convergent on [a,b]N@Q, then it is uniformly convergent on [a, b].
7.1.7. (9) . .

True or false? From a sequence of uniformly bounded continuous
functions f, : [a,b] — R one can select a uniformly convergent subsequence.
7.1.8. (3) . .

For which values of z do the following sequences converge? On
which intervals do they converge uniformly?

n
/ 1
x V1 + xr2n 22 + =
1+ n

True or false?

A pointwise limit of convex functions is convex.

A pointwise limit of strictly convex functions is strictly convex.

A pointwise limit of Riemann-integrable functions is Riemann-integrable.
A pointwise limit of differentiable functions is differentiable.

3
=
©
—
=

oo
eLzeE

7.1.10. (4) True or false?

(a) A uniform limit of convex functions is convex.

(b) A uniform limit of strictly convex functions is strictly convex.

(¢) A uniform limit of Riemann-integrable functions is Riemann-integrable.
(d) A uniform limit of differentiable functions is differentiable.

7.1.11. (5) A sequence of functions f1, fa,...: I — R is uniformly Lipschitz
ifIK e RVn € NVa,y € I |fn(x)— fn(y)] < K|z—y|. Prove that a pointwise
limit of a sequence of uniformly Lipschitz functions is Lipschitz.

7.1.12. (7) . . o

Prove that a uniformly bounded and uniformly Lipschitz sequence
of functions has a uniformly convergent subsequence.

7.1.13. (7) Prove that if (f, : H — R) is uniformly convergent on all
countable subsets of H, then it is uniformly convergent on H.

7.1.14. (5) True or false? If fi, fs, ... is a sequence of continuous non-negative

functions, then F'(x) = inf{ f1(x), fo(x),...} is also continuous.
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7.1.15. (9) True or false? If H is a non-empty bounded and closed subset of

Cla,b] and f: H — R is a continuous map, then f has a maximum.
7.1.16. (9) Is the Baire theorem true for C[a,b]? That is, decide whether
Cla,b] can be presented as a union of countably many nowhere dense sub-
sets.

7.2 Convergence of Series of Functions

7.2.1. (8) Show that if Y f, converges uniformly on the set H after any

n=1
o0
rearrangment of the terms, then > |f,| is uniformly convergent.

n=1

7.2.2. (4) x

oo
For which values is the series —_

n
) convergent? For

which values is it absolutely convergent?

Z1-3...2n-1) ( 22 \"
7.2.3. (4) For which values is the series Z 23 1 ( n2 ) < 2 ) 1)
— 2-4...(2n) x? +

convergent? For which values is it absolutely convergent?

oo
.2.4. . . . 5"+ 32
7.24. (4) For which values is the series Z Tm"(l —1x)" convergent?
n=1
For which values is it absolutely convergent?
> n
7.2.5. 3) For which values is the series Z T * — convergent? For which
—x
n=1
values is it absolutely convergent?
7.2.6. (3 — "
2.6. (3) For which values is the series Z T a2 convergent? For which
x
n=1

values is it absolutely convergent?

o0
7.2.7. (4) For which values is the series Z ne” "* convergent? For which
n=1
values is it absolutely convergent?
7.2.8. (4) >, 2" cos” x
e For which values is the series ——— convergent? For
n
n=1

which values is it absolutely convergent?



106 7. SEQUENCES AND SERIES OF FUNCTIONS

o0
7.2.9. (5) For which values is the series Z

n=1
which values is it absolutely convergent?

n
[x(a:—i—n)] convergent? For
n
o0
7.2.10. (7) Prove that if the Laurent series Z anx™ converges at v =r

n=—oo

and z = R, (0 < r < R) then it converges for all z € [r, R].

7.2.11. ) | por which = is o

Z n xn
a‘"l
n=—oo

convergent? Which is the value of the sum?

7.2.12. (6) | (), = xz(z —1)...(x — (n — 1)). At which points do the

following Newton-type series converge and converge uniformly?

> T)n Oolxn
> Y

n=1 n=1

where p € R.

7.2.13. (6) Assume that f,, () are monotonic on [a, b], and that

converges absolutely for x = a and x = b. Show that the series converges
absolutely and uniformly on [a, b].

o0
1
7.2.14. (7) Assume that Z — converges. Prove that
an
n=1
>
n=1 L= an

converges on any closed interval that does not contain any of the a,(n =
1,2, ...). Is the convergence absolute? Is it uniform?
7.2.15. (7) Assume that
oo an

ne
n=1

converges for x = xy. Prove that it converges for any = > xg.
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7.2.16. (7) Construct a series of functions that is both uniformly convergent

and absolutely convergent but not uniformly absolute convergent.

7.2.17. (5) Give an example of non-negative uniformly convergent series, for

which the Weierstrass criterion is not applicable.

7.3 Taylor and Power Series

log(z? — 1) at 2;

ar sinh 22 at 0;

g) ar cothx at 2.

Give intervals where the Taylor series converges to the function.

(

(

( s
(d) sinz at 3
(

(

(

—

7.3.2. (7) Construct an infinitely differentiable function f whose Taylor

series around 0 converges everywhere but the limit equals f(z) if and only if
ze[-1,1

7.8.3. (3) Determine the radius of convergence of the following series.
1y
99, n 142 )zn 1z
ISULED Ol (RS FD Stk
7.3.4. (1) By the binomial theorem (1+4z)® = Z (Z) o if | < 1. Which
k=0
identities result in the « = —1 and o = —2 cases?

7.3.5. (6)

r 2 2 al o (=1)F

- 4L = 4 =7 =7

T T St ST D P s

k=0
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7.3.6. (6)
i (1 1) _9
P 3k+1 3k+2
7.3.7. (6) Let ¢g =1 and ¢p41 = Y, cpcpn—k. (Catalan numbers.) Define
k=0

G(z) = > cpz™ the so-called generating function of the Catalan numbers.
n=0
(a) Prove that G converges in a neigborhood of 0.
(b) Prove that in the (non-empty) interior of the convergence interval
G(r) = 2G?(x) + 1.
(c) Using b) determine G and ¢, explicitely.

7.3.8. (8) Let p,, be the number of partitions of the number n into different
parts. (For example pg = 1 and pg = 4, because 6 = 5+1 =4+2=3+4+2+1.)
Using the generating series P(z) = . p,z™ find an upper bound for p,.

n=0

7.3.9. (5) Determine the Taylor series of ar tanhz around a = 1/2. For

which = do the series equal the original function?

7.3.10. (6)

ad 1 1 2
> (grri tarrs - wes)
Z\3k+1 " 3k+2 3k+3

7.3.11. (5) (a) For which real values of ¢ will the series Z (nc . cos(nx))

n=1
converge on R?
oo
(b) For which real values of ¢ will the series Z (nc . sin(m;)) converge
n=1
uniformly on R?

7.3.12. (2) For which ¢ € R



Chapter 8

Differentiability in Higher
Dimensions

8.1 Real Valued Functions of Several Variables

8.1.1 Topology of the n-dimensional Space

8.1.1. (2) Find the interior, boundary and closure of the set

A{(:L’,sinl> x>O}CR2.
x

8.1.2. (5) True or false?

e a) AC B = intA C int B;

)
)

e b) intint A = int A;
e ¢)0int A=0A;

e d) in

° e)i:Z;

o f) int(A) = int A;
e g) DA =0A

109
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8.1.3. (5) Prove that H is the smallest closed set containing H.
8.1.4.(4) | 7 _ {y | 3z, € H sequence, for which z,, =y }.
8.1.5. (4)

Shgw tgat
a) AUB =AU B;
b) ANB C AnB.

8.1.6. (1) Prove that if p is a limit point of E C R?, then all neighborhoods

of p contain infinitely many points of E.

8.1.7. (5) Show that for all H ¢ R 00H C 0H. Give an example when

the inclusion is proper.

8.1.8. (6) Let x € R™ and let A C R™ be closed. Prove that there is a € A
for which |z — a| = d(z, A), where

d(xz,A) :=inf{|z —b] : be A}

is the distance of z from A.

8.1.9. (6) Let A C R? be closed such that its diameter

diam(A) :=sup{|z —y| : z,y € A}
is d. Prove that there are a,b € A whose distance is d.

8.1.10. (1) Determine the interior, exterior and boundary of the following
sets. What is the boundary of the boundaries?

(oo}

1
{(m,y) ER?: 2,y >0, 24y < 1}; U {(Jr:,y) eR*: z=1/n, |y < n}

n=1

8.1.11. (5) For any subset A of a metric space show that

intint A =int A; intext A = ext A.

8.1.12. (6) Prove that if K is such a subset of a metric space that from all

covers of K by open balls contain a finite subcover, then K is compact.
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8.1.13. (8) Prove that if K is a compact subset of a metric space, then K is

bounded and closed.

8.1.14. (5) Is there an A C R for which 0A, 00A, Q00A, ...are all different?

8.1.15. (5) Prove that for any A, B subset of a metric space

d(AUB) C AU OB;

(AN B) C AU IB.

Is it true that
(0(AUB)) U (0(ANB)) =0AUIB?

8.1.16. (6) (a) Prove that for any subset A of a metric space d(int A) C A
and O(ext A) C 0A.
(b) Is it true that d(int A) = d(ext A)?

8.1.17. (5) Prove that in a metric space the boundary of any set is closed.

8.1.18. (6) Prove that if K is a compact subset of a metric space, then all
closed subsets of K are compact.

8.1.19. (1) p . . N

rove that in any metric space the cardinality of open and closed

sets is the same.

8.1.20. (8) Prove that if in a metric space every bounded, closed set is
compact, then the space is complete.

8.1.21. (9) (a) Prove that if the Bolzano—Weierstrass theorem is true in a

metric space, then the space is complete.
(b) Give an example for a metric space that is complete but for which the

Bolzano—Weierstrass theorem is not true.

8.1.22. (8) Prove that R? has continuum many open (closed) subsets.

8.1.23. (9) A subset of RP is “Gy” if it is the intersection of countably many
open sets. A chain H is a set of subsets of RP such that from any two sets in
H one is contained by the other. Prove that the intersection of any chain of
open sets is Gj.

8.1.24. (5) Collect as many descriptions of open and closed sets as you can.
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8.1.25. (5) Prove that in R? every closed interval [a,b] is connected, that is,
if [a,b] C (AU B), then [a,b] C A or [a,b] C B.
8.1.26. (6)

Prove that RP satisfies the Baire category theorem.
8.1.27. (9) Prove Helly’s theorem:
(a) If Fy,...,F, C RP are convex, and any (p + 1) among them have a
common point, then the Fj-s have a common point.
(b) If F; C R? (i € I) are convex and compact and any (p + 1) among
them have a common point, then the F;-s have a common point.
8.1.28. (9) Show that the unit ball of C[a,b] (with the maximum norm) is
not compact.

8.1.29. (10) Is it true that the intersection of a chain of Gy sets is G§?

8.1.30. (9)

8.1.2 Limits and Continuity in R"”

8.1.31. (4) lino (2 + 1) =7

8.1.32. (8) | A L orm on R” is a function ||| : RP — R that satisfies

(a) ||z|| > 0 and ||z|| = 0 if and only z = 0;
(b) [z + yll < [[=[| + [lyl];

() lle-z|| = || - ||z]| for all c € R, z € R™.
Define the following norm on RP:

p 1/«
o = (Z |xi|“> (1<a<oo) il = ma foil
1=

(a) Prove that these are norms.
(b) Why do we need 1 < a?
(c) Prove that for all z € RP

Tim el = Jlal|.
(d) Show that
Ve, B € [1,00) U{oo} Jeq,e0 > 0 Vo € RP ¢q||z||a < ||2]lg < c2l|z||a-

(e) Prove that any two norms are equivalent if ||.|| and ||.||" are two norms,
then there are ¢1,c2 > 0 such that ¢1||z|| < ||z|]" < eal|z]|.
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8.1.33. (1) Prove that the map (z,y) — x + y is continuous. Find ¢ for
e = 1073 at the point (1,2).

8.1.34. (3) | pur what o € R is

LY
flx,y) = (@2 +y?)~
0 if (x,y) = (0,0)

continuous at (0,0)?

8.1.35. (5) Let ACRP and f: A — R. Let B C R? be the set of points
where f has a limit at b € B, and let g(b) = lgm Af(x). Prove that g is
r—b, x€
continuous on B.
8.1.36. (6) Assume that f : R? — R and all sections f,—, are continuous and
all sections f,—, are monotonic and continuous. Prove that f is continuous.

8.1.37. (7) Prove that if K C RP and all continuous functions on K are

bounded, then K is compact.

8.1.38. (1)
point (1,2).

Prove that (x,%y) = xy is continuous. Find § for e = 1073 at the

8.1.39. (4) Find f : R — R and ¢ : R? — R for which ligng =0 and li(l)rnf =0

but li(I)n(f og) #0.

8.1.40. (5)
. cosx +cosy — 2
lim = —J = _

)
(2,y)—(0,0) 2 442 )

For a given ¢ find 4.

8.1.41. (3) Prove that f : RP — R is continuous if and only if the preimage

of any open set is open.

.1.42. sinx — sin o - .
8.1.42. (5) Does S0 7MYy ve a limit at the origin relative to the set

T—y
{(z,y): z#y}?
Can this function be extended continuously to the whole plane?

8.1.43. (1) 290 ERP. f:RP - R, &+ |x—1x|. Prove that f is continuous.
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8.1.44. (4)

For what a > 0 is continuous at the origin?

_ay
(22 + 3y?)*

8.1.45. (3) | 1ot A CRP, A £ 0 and define f : R” — R,

f(z):=inf{ |z -yl |ye A}

Prove that f is continuous. Prove that

flz)=0 = xz € A

8.1.46. (8) Construct a Peano-curve, a continuous and surjective map from
[0,1] to [0,1]? and to [0,1]3.

8.1.3 Differentiation in R"

8.1.47. (1) Is zy (R? — R) differentiable? What is the derivative?

8.1.48. (2)

(t) = 2 ift>0
T= ¢ it <o
At what points is f(z,y) := g(x) + g(y) differentiable?

8.1.49. (2) Sketch the level curves of f(z,y) = e . Given (xo,y0) in

which direction does f grow fastest?

8.1.50- (3) | A¢ which points is || . ||1 := 3 || differentiable?

8151 3) ] Lot 1< p < oo At which points is the || . ||, == (3 |zs[P)"/?
function differentiable?

8.1.52. (7)

Give a function f : R? — R for which all directional derivatives
exist at (0,0) but which is not differentiable at (0,0).

8.1.53. (5) Let f : R? — R be the distance of (x,y) from the interval
I:=[0,1] x {0}. At which points is f differentiable? Twice differentiable?

8.1.54. (2) | 14t ;. R? - R be differentiable with derivative (f(z,v),9(z,y)).
What is the derivative of F(sint,cost)?
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8.1.55. (1) flx,y) = 22 + 93, g(x,y) = 22 + y*. Calculate the first and

second differentials at (0,0).

8.1.56. (4)

2

_ xyiziﬂ/? otherwise 0% f 0.0) =7 0% f 0.0) =2

8.1.57. (4) Is the function (z,y) — arcsin% uniformly continuous?

8.1.58. (2)
0.
8.1.59. (3)

Let f(z,y) = logy/(z —a)2 + (y — b)2. Show that % + 227]; =

o) = (2% + y?) sin \/"clegﬂ otherwise
7o if (2.y) = (0.0)

is differentiable everywhere but not continuously.

8.1.60. (3) Let g(t) = sgn(t)-t2. Show that f(x,y) = g(x)+g(y) is everywhere
differentiable but is not twice differentiable along the two axes.

8.1.61. (3) Show that (z —y?)(2x — y?) has no local minimum at (0, 0) even

though it has a local minimum along any lines through (0, 0).

8.1.62. (2) f : R? — R is smooth. Give a normal vector of the graph of

z = f(x,y) at the point (zo,yo, f(zo,%0)).

8.1.63. (3) Find the minimum and maximum of 23 +2%—zy on [0, 1] x [0, 1].

8.1.64. (3) Find the maximum and minimum of zy-log(z? +y?) on 22 +72 <
r.

8.1.65. (1)

Prove that if f : R? — R has partial derivative D; f = 0, then f
only depends on y.

8.1.66. (2) Prove that (z1,29,...,2,) — 21 + 22+ ...+ 2, is differentiable.

What is its derivative? For a given ¢ find §!
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8.1.67. (2) Prove that (x,y) — ¥ is continuously differentiable on {(z,y) €
R? : y > 0}. What is the derivative?

3
8.1.68. (3) Prove that f(z,y) = %, £(0,0) = 0 has directional deriva-
x Y

tives at the origin in all directions. Is there a vector a such that for all v unit
vector one has D, f(0,0) = a - v?

8.1.69. (4) Describe those f : R? — R for which Dy f = Dy f?

8.1.70. (4) Prove that if f : R? — R is differentiable at a, f(a) = 0 and
f'(a) =0, then for all bounded ¢ : RP — R, gf is differentiable at a.
8.1.71. (5) Give a function g whose directional derivatives all exist and
vanish at the origin, but
(a) g is not differentiable at the origin;
(b) not continuous at the origin;
(¢) not bounded in any neighborhood of the origin.

8.1.72. (6) Assume that f : R? — R has a second partial derivative Diaf
which is non-negative. Show that if a < b and ¢ < d, then f(a,c) + f(b,d) >

fla,d) + f(b,c).

8.1.73. (5) Assume that f : R? — R has a second partial derivative Diaf
and for all @ < b, ¢ < d we have f(a,c) + f(b,d) > f(a,d) + f(b,c). Show
that D15 is non-negative.

ai1 e A1n
8.1.74. (5) Find the derivative of tr : R™*"™ — R, tr | ; =
a1 +ago+ ...+ apn-

8.1.75. (2) Find the derivative of the scalar product of n-dimensional vectors

when viewed as an R?" — R function.

8.1.76. (1) Prove that (z,y) — x/y is differentiable (y # 0). What is the
derivative?

8.1.77. (2) Prove that (z1,22,...,2Z,) = X122 ... 2, is differentiable. What
is the derivative?

8.1.78. (5)

True or false? If f : R? — R is differentiable and for all lines
through a f has a local minimum at a along the line, then f has a local
minimum at a.
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8.1.79. (5) Let B be a real ¢ x r matrix. What is the derivative of

F@1, e mgpr) = (@1, 2 )M (Tgats ooy Tgar) ?

8.1.80. (5) True or false? If f : R? — R is differentiable at all points except

perhaps at the origin and at the origin it has vanishing directional derivatives
in all directions, then f is differentiable at the origin.

8.1.81. (3)

8.1.82. (4) | . which values of a,B > 0is |z|* - |y|® twice differentiable at
the origin?

8.1.83. (1)
(1,2,3).

8.1.84. (1)
(0,0).

8.1.85. (3)

Write down the second degree Taylor polynomial of zyz at
Write down the third degree Taylor polynomial of sin(z + y) at

Find the local extrema of

22 +ay+y? — 3z — 3y + 5; 322 —x — ).

8.1.86. (8) | prove that if Disf and Doy f exist in a neighborhood of (a, b)
and they are both continuous at (a,b), then D1sf(a,b) = Do1 f(a,b).

8.1.87. (8) Prove that if Dy f, Do f and Djs f exist in a neighborhood of (a, b)
and D14 is continuous at (a,b), then Doy exists and D1 f(a,b) = Doy f(a,b).
(Schwarz)

8.1.88. (3) Find the local extrema of the following functions:

3+ 3 — 9zy; sinz + siny + sin(x + y)
8.1.89. (7) Assume that f : R2 — R is differentiable and for all z,y we have

y2 : le(.T,y) = IZ : D2f(xay)

Prove that f(z,y) = g(z3 + y3) for some g. Is it necessarily true that the
function g is differentiable at 07
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8.1.90. (3) Prove that if fq,...,f, : R = R are twice differentiable and
convex, then g(z1,...,2zp) = fi(z1) + ... + fp(zp) is also convex.

8.1.91. (3) What are the local extrema of zy + % + i?

8.1.92. (5)

How many local maximum and minimum places exist for (1 +
e¥) cosx — ye¥?

8.1.93. (2) Let f(x,y) = ¢¥(x — ay) + p(x + ay), where 1, p are smooth.
2 2
Pf W0,
Oy? 02

8.1.94. (4) | 1 . what ¢ is

flx,y) = {\/:Q%ﬁ if (z,y) # (0,0)

differentiable?

8.1.95. (7) Prove that if f : R? — R is differentiable and D; f(x,y) =

yDo f(z,y) for all z,y, then there is a g : R — R differentiable function for
which f(z,y) = g(e"y).

8.1.96. (7) Prove that if H C RP? is convex and open and f : H — R is
convex, then f is Lipschitz on all compact subsets of H.

8.1.97. (9) Given F' : RP — R twice differentiable convex function we are
looking for the minimum of F' using the conjugate gradient method: start
with xo and let

Tp41 = Tn — C(xn) ) gradf(xn)a
where ¢(x,,) is computed from the first and second derivatives of f at z,.
(a) What is a good choice for ¢(x,)?
(b) Prove that the method works for quadratic forms.

8.1.98.(4) | ot H c RV, a € RP, b e RY, (a,b) € int H and f : H — R

differentiable at (a, b) and assume that near a there is a differentiable function

¢ to R? such that f(z,p(x)) = 0. Prove that

fa0) o ¢'(a) = = () (a).
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8.1.99. (4) For |z| <1, |y| < 1, |2| < 1 let u(z,y, 2) be the real root of

2+ + (1 +y)u—(3+2)=0.
Find «/(0,0,0).

8.1.100. (4) For |1 —10] < 1, |[z2 — 20| < 1, |23 — 30| < 1 let w = (u1,uz2) be
the root of
T1ToT
Uy + U2 = x1 + 22 + 3 — 10, wjug = 11(2) 3

closest to (30,20). Find v'(10, 20, 30).
8.1.101. (4) Given the constraints z? + 2 = 1, 22 4+ 22 = 1 find the largest
possible values of x, z + y + 2z, and y + z.

8.1.102. (4) Find the maximum of zyz given the constraints x +y +2 =5
and 22 + 9% + 22 = 9.
8.1.103. (5) Let A and B be n x n real symmetric matrices where det A # 0.
(a) Prove that if  — 27 Bz has a local extremum at xy € R™ given the
constraint 7 Az = 1, then x¢ is an eigenvector of A~'B.
(b) What is the meaning of the eigenvalue corresponding to the eigenvector
xo?
8.1.104. (6) Given pq,...,p, in 3-space we are looking for the plane through
the origin for which the sum of the squared distances from the points to the
plane is minimal. Let v be the normal vector of this plane, where |v| = 1.
n
(a) Show that v is an eigenvector of the matrix Y p;p?.
i=1
(b) What is the geometric meaning of the eigenvalue corresponding to the
eigenvector v?

8.1.105. (4)
y?)?

8.1.106. (5)

What is the image of 22 + y? < 1 under the map z?y>log(z? +

Let f: R? = R be twice differentiable. Prove that if

<f/($, Y, Z)7 (l‘, Y, Z)> >0
holds everywhere, then

D11 £(0,0,0) + D32 £(0,0,0) + D33 f(0,0,0) > 0.
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8.1.107. (4) Find the distance of (5,5) from the hyperbola zy = 4 using

Lagrange multiplicators.

8.1.108. (7) We know that f: R? — R is differentiable and

y* - D1 f(z,y) +2° - Daf(z,y) = 0.

Prove that f(v/2,v/3) = £(0,0).

8.1.109. (4) Is the function

sin? x+sin2 y+sin2 z

f(x,y,z) _ 22 y2 422 x,y,z) 7£
1 rT=y=2z

differentiable at the origin?

8.2 Vector Valued Functions of Several Vari-
ables

8.2.1 Limit and Continuity

8.2.1. (5) f:RP >R A BCRP, € ANB. Assume that f is continuous

at « when restricted to either A or B. Prove that f is continuous at  when
restricted to A U B. Does this remain true for a union of infinitely many
sets?

8.2.2. 3) f:RP - R7 A B C RP. Assume that f is continuous when

restricted to either A or B. Is it true that f is continuous when restricted to

AUB?

8.2.3. (3) . .

Let f:RP — R9, A, B C R? be closed. f is continuous when

restricted to either A or B. Is it true that f is continuous when restricted to
AU B?

8.2.4. (10)

8.2.2 Differentiation

R S (1) (P sin) g R R, (XY, 2)

XY. (go f) =7
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8.2.6. (1) Find the Jacobi-matrix of the following functions

f(@,y) = (z+y,ay,cos(x+y)); gz, y)= (", ay); h=foy.

S
S
S~—"

)

8.2.7. (2) Prove that vectorial product viewed as a R® — R? function is
differentiable. What is its derivative?

8.2.8. (4) What is the Jacobi matrix of the local inverse of f(x,y) =
(x2 - y2a 2xy)7

8.2.9. (5)
that

Let A : R® — R"™ be an invertible linear transformation. Show

1
min{ Az|z € S§1(1)}

1A~ =

8.2.10. (5) Find an A : R® — R"™ linear transformation for which

> a2, >4l
1,7

Show that > is always true.

8.2.11. (8) Prove that
q ai;p ... Qip
max | > af; <
1<j<p P a a
ql e qp

Give an example when equality does not hold.

8.2.12. (2) Find the Jacobi-matrix of the following functions:

f(z,y) = (sinz,cosy); g(z,y) = (logz, x> +y°); h=fog.

8.2.13. (4) Let f : RP — R? be differentiable at the points of the interval
[a,b] C RP. Prove that

[F(0) = f@)| < [b—al - sup [[f'()]l.

c€la,b]
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8.2.14. (7) Prove that for all A € Hom(R?,RP) ||A|| > |det A|'/P.

8.2.15. (5)

(a) Prove that all linear maps R? — R? are Lipschitz.
(b) Prove that if A € Hom(R?, RP) is invertible, then 3¢ > 0Vz € R? |A(x)| >
clx|.



Chapter 9

Jordan Measure and
Riemann Integral in
Higher Dimensions

9.0.1. (2) Prove that for all 0 < a¢ < b there exists a bounded set H C RP
for which b(H) = a and k(H) = b.
9.0.2. (3)

Let H C R? be a bounded set. Determine whether the following
statements are true or false.

(a) If k(H) =0, then H e J. (d)If H € J, thenintH € J.
(b)If He J,thenoH e J. (e)If He J,thenclH € J.
(c)fOH e J,then He J. () intH € J and clH € J, then H € J.

9.0.3. (5) Let A, B C RP be disjoint bounded sets. Order the following

numbers
k(AU B); b(AU B); k(A) + k(B); b(A) + b(B);

k(A) +b(B);  b(A)+ k(B).

9.0.4. (5) Let f:(0,1) - R, f(z) = zsinlogz. Is this a function of

bounded variation? Is it absolutely continuous?

123
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9.0.5. (4) Determine whether the following statements are true or false.

Here f is a function from [a, b] to R.
(a) If f is monotonic, then f is of bounded variation.
(b) If f is continuous, then f is of bounded variation.
(c) If f is continuous and of bounded variation, then f is Lipschitz.
(d) If f is of bounded variation, then the interval [a,b] can be written as
the union of countable many subintervals on each of which f is monotonic.
(e) If the f; df Stieltjes integral exists, then f is absolutely continuous.
(f) If f is absolutely continuous, then f is Riemann-integrable.
9.0.6.(5) ] .
et H C RP be a bounded set. Are the following statements true
or false?
(a) If c1H € J, then H € J.
(b) If H is closed and H € J, then int H € J.
(¢) If H is open and H € J, then clH € J.
(d) If k(int H) = b(cl H), then H € J.
(

©
o
q
N

0.7. (

Let A C RP, B C R? be bounded sets. True or false?

(a) kPTD(A x B) = kP (A) - k@ (B).

(b) bP+9 (A x B) = bP)(A) - b9 (B).

(¢) If A and B are measurable, then Ax B is also measurable and ¢+ (A x

B) = t(P)(A) . t(q)(B).

9.0.8. (6) Let Aq,..., A, be measurable sets in the unit cube whose mea-
sures add up to more than k. Show that there is a point which is contained
in at least k of these sets.

9.0.9. (5) Prove that if A C B C R? and B is Jordan-measurable, then

t(B) = k(A) + b(B\ A).

9.0.10. (5) Show that a bounded set A C RP is measurable if and only if

k(B) =k(BNA)+ k(B\ A)
for any set B C RP.
9.0.11. (5) Let A C [a,b] be Jordan-measurable. Connect the points of A

to an arbitrary (but fixed) point of the plane. Show that the union of these
line segments is Jordan-measurable in the plane. What is its “area”?
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9.0.12. (4) Is it true that if A C R is measurable, then

{(z,y) : Va2 +y2 € A} C R?

is measurable?

9.0.13. (7) Prove that if By, Bz, ... C RP are pairwise disjoint open balls,
then
b( U BZ) => b(B;).
i=1 i=1
9.0.14. (7)

Show that for any 0 < ¢ < d < oo there exists a bounded, closed
set with interior measure ¢, and exterior measure d.

9.0.15. (6) Prove that if m : J — R is non-negative, additive, translation-

invariant and normed, then m = ¢.

9.0.16. (5) Prove that if A, B C RP and cl AN clB is of measure zero, then
k(AU B) =k(A) + k(B).

9.0.17. (6) Prove that a bounded set A C RP is measurable if and only if

b(B)=b(BNA)+b(B\A)
for any set B C RP.
9.0.18. (5)

Let A C R? be Jordan-measurable. Is it true that the set U [0, al

acA
is measurable?

9.0.19. (6) For any € > 0 divide the n-dimensinal unit cube into an open
and closed part in such a way that the inner Jordan measure of each is less
than e.

9.0.20. (10) For any H C RP bounded set let B(H) be (a) largest open ball
in H if H has no interior, then let B(H) = (). Starting from an Ay C RP
Jordan-measurable set let A1 = A and A,11 = A, \ B(4,). Prove that
limb(A4,,) =0.

9.0.21. (9) Is there a Peano-curve that is differentiable? (I.e. is there a

surjective differentiable map [0, 1] — R2?)



126 9. JORDAN MEASURE AND RIEMANN INTEGRAL IN HIGHER DIMENSIONS

9.0.22. (8) Let f:[0,1] — R? be a simple closed curve. Does it follow that

its image has measure 07
9.0.23. (3) What is the moment of inertia for a cylinder of mass m, radius
r, and height 2h about an axis that goes through its center but is orthogonal
to its axis of symmetry?

9.0.24. (2) Interchange the order of integration.

epaas [T e dyas
0o Jax —1J|z|

9.0.25. (3)

1 x
/ / y?e® dy do =?
0o Jo

9-026- (4) ] Tye vertices of a triangle are A = (a,0), B = (b,0) and C' =
(0,m). For (x,y) € [0,1]? let

flay)=1-2)1-y)-A+z(l—-y)-B+y-C.

Use this map and the theorem on measure transformation to determine the
area of the triangle.
9.0.27. (3) Calculate the area of the set, defined with polar coordinates, by

B-90°<p<90° —7, 0<r<
cos

9.0.28. (3)
3 2 2 _9
sin(z® + y*) do dy =7
72 <a?4y2<dm?

9.0.29. (7) Prove that if A is measurable with positive measure and f is

integrable on A, then there is at least one point where f is continuous.

9.0.30. (5) Let f be bounded and non-negative on the measurable set A.
Prove that [, f = 0 implies that k({z € A: f(z) > a}) =0 for all a > 0. Is
the converse true?
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9.0.31. (10) We need a simulated random sequence of normal distribution,

L et
Var '
that gives random numbers with uniform distribution in [0, 1] how can one
generate such a sequence. (Hint: use two sequences.)

ie. with density o(z) = Given a random-number generator

9.0.32. (8) For all continuous functions f : R — R let Iyf = f and for a > 0
let I, f be the function for which

1) = [ ' f(t)“”;(‘?;_ dr.

Prove that (a) (I1f)(z) = [ f; (0) Tage = Ials.
9.0.33. (5) Prove Steiner’s theorem: if a rigid body has mass m and its
moment of inertia about an axis [ through its center of mass is I, then the
moment of inertia about an axis parallel to { and of distance r is T + mr2.

9.0.34. (4)

1 1 1 1
/ (/ V1+ad dm) dy =7 / (/ y cos > dx) dy =7
0 VY 0 y2/3

9-0-35. 3) J  Caleulate the volume of {(y,2) e R a2 492 <1, [2] <

3

eVoity?y,

9.0.36. (7) Is it true that if f : [0,1] x [0,1] — R is monotonic on every

horizontal and vertical segments, then it is integrable?

9.0.37. £7) Prove that if f > 0 on A C R™ with positive Jordan measure,
then [, fdxz > 0.

_z2
9.0.38. (10) | [t ueR. I e\/; cos(az) do =?
9.0.39. (6)

Prove that a bounded set K C R" is Jordan-measurable if and
only if it cuts all bounded open sets “properly” i.e. for all bounded open set
X CR" one has (X N K) +b(X \ K) = b(X).

9.0.40. (6) Prove that a bounded set K C R" is Jordan-measurable if and

only if it cuts all bounded closed sets “properly” i.e. for all bounded closed
set X C R™ one has k(X N K) + k(X \ K) = b(X).
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9.0.41. (4) Give a function ¢ : [0,2] — R such that for any continuous
function f:[0,1] - R

/Ol/olf(z2+y2)dxdy=/02f<p-

9.0.42. (4)

/2 /2 L
/ / Sy dy | dz=?
0 T Y

What is the moment of inertia of a cone about its axis of rotation
if it has homogeneous mass distribution with mass m, its height is h and its
base disc has radius r?

9.0.44. (8)

9.0.43. (3)

Prove that if F; D Fy D ... are bounded, closed sets and () F,
n=1
is of measure zero, then k(F,) — 0.

9.0.45. (9) | I(s) = [; 2" 'e™ dz and B(s,u) = [ (1 —z)e !t de

0
be Euler’s Gamma and Beta functions. Show that

9.0.46. (7) Express the volume of the n-dimensional unit ball using Euler’s

I" function. What is the volume of the “half-dimensional” unit ball?

(o)
9.0.47. (4) Prove that > e~"*% is infinitely differentiable on (0, 00).

n=1

1 1
/ N (/ eV’ dy) dz =?
0 x3/4

Prove that for s > 0 I'(s) - I'(s) > |I‘/(s)‘2.

9.0.48. (4)

9.0.49. (7)

9.0.50. (7) Formulate and prove the Dirichlet and Abel criterions for im-

proper integrals.
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9.0.51. (6) Formulate a Weierstrass type criterion for improper Stieltjes
integrals.
9.0.52. (7) Lt
i Is f(t) = / / ™" dx dy (t > 1) differentiable? What is its
1 J1
derivative?

9.0.53. (7) Let f : R? = R be continuous, and
G(T‘) = f12+y2<r2 f(x,y, r) dz dy (r > 0).
(a) Show that G is continuous.
(b1) Show that if f continuously differentiable, then G is also continuously
differentiable. What is G’?
(b2) Can the condition of continuous differentiablity be weakened?

9.0.54. (8) Prove that Euler’s Beta function is strictly convex.

t
9.0.55. (7) Is f(t) = / ™"t dz differentiable? What is its derivative?

1

12

Let f : R? — R be continuous and G(z) = f(z,y) dy.

—T

9.0.56. (7)

(a) Prove that G is continuous.

(b1) Show that if f is continuously differentiable, then G is also continu-
ously differentiable. What is G'?

(b2) Can the condition of continuously differentiability weakened?

9.0.57. (5) Show that Euler’s Beta function is infinitely differentiable and

express its derivative as an integral.

oo
9.0.58. (10) According to Tauber’s theorem if lim Z ap,r™ = C exists and
r—1-0
n=0
oo
finite and moreover na,, — 0, then Z a, = C.
n=0

(a) Formulate a Tauberian theorem for parametric integrals.
(b) Prove the Tauberian theorem for parametric integrals you formu-
lated.

oo —t?/2
oo V2T
(a) Prove that I(z) - I(y) = I(\/x? +y?).

a
(b) Describe the behavior of I near 0.
(c) I(z) =7

9.0.59. (10)

For z € R let I(z) = cos(zt) dt.
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9.0.60. (9) Let B be Euler’s Beta function. Prove that log B is convex.



Chapter 10

The Integral Theorems of
Vector Calculus

10.1 The Line Integral

10.1.1. (3) Let v : [1,2] — R3, y(¢) = (logt, 2¢, 2).

(a) Determine the length of ~.

(b) Determine the line integral of the vector field f(z,y, z) = (x,y, z) along
the curve 7.

10.1.2. (3) Let C be the geometric curve {(z,y)| |z|+|y| = a}. [, 2y ds =7

10.1.3. (3) Let v :[0,2] — R2, (t) = (t,t%). Compute the fv(—y,x) dg line
integral where ¢ is the identity function.

10.1.4. (3) Let v be the semicircle which is the right part of the circle

centered at 0 with radius a (i.e. those points satisfying x > 0). fv x dy =7

10.1.5. (3) Let v be the semicircle which is the upper part of the circle

centered at 0 with radius a (i.e those points satsifying y > 0). f,y 2% ds =?

10.1.6. (4)

2
a) / sinx d{z} =7 b) /x2 d(y?) =?
0 8!
where v is the triangle with vertices (0, 0), (2,0), (0, 1).

131
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10.1.7. (4) Calculate the line integral [zy dy on the curve in the figure.

A
1

-1 0 1

10.1.8. (3)

Determine the line integral of the vector field L, 4
1+y 242
along the parabola y = 2% segment between the points (—1,1) and (1,1).
10.1.9. (4) Consider a map g : [a,b] — R as a one-dimensional curve. When
is it rectifiable? What is its length?
10.1.10. (4)
that

Let g : [0,1] — R? be a simple closed and rectifiable curve. Prove

/x2 dav:/(fcosz“’2 dy = 0.
g g

Let x : RP x R? — R" be bilinear, f : R? — RP continuous and
g : [a,b] = R? a continuous curve. Show that

(a) if g is rectifiable, then fg f(x) x dx exists;

(b) if g is continuously differentiable, then fg f(x) xdx = fab flg(t)) =
g'(t) dt.

10.1.11. (4)

10.2 Newton-Leibniz Formula

10.2.1. (3) Let g(t) = (¢,t%) (t € [0,1]). Calculate the line integrals:

/ cosx dy /((em cosz, e’ siny), dx)
g

g

10.2.2. (3) Let g(t) = (1,t,t%) (t € [0,1]) and f(z,y,2) = (yz, xz,17).

Calculate the following line integrals:

/gfl dwsg /g(f, dx) /gfxdx
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Which of these integrals can be computed immediately from the fundamental
theorem of calculus for line integrals?

10265 () For what functions f : R?> — R will the following statement be

true? If g is a simple, closed rectifiable curve in R?, then

/x2y3 dy = /f(w,y) da.
g g

What differentiable f : R? — R functions satisfy the following
statement? If g is a simple closed rectifiable curve in R?, then

/emcosydx:/f(x,y) dy.
g g

Give a continuous vector field f : R? — R? whose line inte-
gral vanishes on every closed rectifiable curve, but which is not everywhere
differentiable.

10.2.6. (7)

10.2.4. (5)

10.2.5. (5)

Show that if the line integral of a continuous f : R? — R2
vanishes on any rectangles whose sides are parallel to the axes, then f is a
gradient field.

Related problem: 10.3.5

10.3 Existence of the Primitive Function

10.3.1. (2) Which sets are simply connected?

R*\(ZxZ) R3\(ZxZxZ) R*\{(cost,sint,0):tcR}
R*\ {(cost,sint,0,0) : t € R}
10.3.2. (3) Let G C RP be open and connected. Show that the scalar
potentials of a vector field G — RP can differ only in constants.

10.3.3. (5) Which of the following is simply connected?

R?\ {(0,0)} R3\{(0,0,0)} R3\{t,0,0):tcR} R*\{t,0,0,0):tcR}
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10.3.4. (10) Let G C RP be open, let f : G — RP be differentiable and

irrotational and let g,h : [0,1] — G be continuously differentiable curves
with the same initial and end points. (I.e. g(0) = h(0) and g(1) = h(1).)
Assume that g and h are homotopic, Jp : [0,1]> — RP continuous such that
@(t,0) = g(t), ¢(t,1) = h(t), and ©(0,u) = g(0) = h(0), ¢(1,u) = g(1) =
h(1) for all u € [0,1].

(a) Show from Goursat’s lemma that [ (f,dz) = [, (f,dz).

(b) Assume in addition that ¢ is continuously differentiable
I(u) = fw(- (£ dx). Prove directly that I" = 0.

10.3.5. (6) Redo the proof of Goursat’s lemma for rectangles.

10.3.6. (5) Let H = R3\ {(z,9,0) : 2?4+ y* = 1}. Give a differentiable
irrotational vector field H — R? which is not a gradient field.

10.3.7. (5) Which of the following vector fields are gradient fields? For those
that are not, give a closed curve on which the line integral of the field does
not vanish.

Z, , L S 59 o5 5 5
Y Y a? 4y 2?4 y? Va?+y2 a? 2

10.3.8. (5) Let G = R3\ {(z,z,2) : * € R}. Find a differentiable vector field

X : G — R3 that is irrotational (curl X = 0) but is not a gradient field.
10.3.9. (4) Which of the following vector fields are gradient fields? For those
that are not, give a closed curve on which the line integral of the field does
not vanish.

sh v: z sinh sh z: v sinh . .
(COb Y, T sin y) (COb Ty Y S JJ) <x2 y2 ; 22 y2 ; >

10.3.10. (3) The electric field of a homogeneously charged line is orthogonal
to the line and its strength at distance d from the line is 2kp/d. Determine
the electric potential difference (voltage) between two points.

10211 (@) Is H=R3\ {(cost,sint,e’) : t € R} simply connected?
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10.3.12. (10) Let G = R?\ {(—1,0),(1,0)}, and g be the curve shown in the

figure.
Y

(a) Show that the line integral of any differentiable irrotational vector field
f: G — R? along g is zero.
(b) Is g homotopic to a point in G?
(¢) Is g homologous to 0 in G?
10.3.13. (8) ] 1 C R? be open and let ¢, (t) [0,1]> — G be continuously
differentiable family of curves. Show that for a continuously differentiable
f : G — R? irrotational vector field the I(u) = f%<f, dz) parametric line

integral satisfies I'(u) = 0.

10.4 Integral Theorems

10.4.1. (1) Check the statement of Green’s theorem for [0, 1] x [0, 1] and the

function f(x,y) = xy.

10.4.2. (5) What are the one-dimensional versions of gradient, divergence,

rotation and the divergence and Stokes theorems?

10.4.3. (2)

For a fixed a € R? let f(z) = a x x and g(x) =z X a (v € R3).
div f =7 divg =7 rot f =7 rot g =7

10.4.4. (3) From the 9 possible compositions of div, rot, grad which ones are

meaningful? Which ones produce zero?

10.4.5. (5) Let f:R3 — R3 be a smooth vector field. Show that

div grad f;
rotrot f = graddiv f — | divgrad fo
div grad f3
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10.4.6. (8)
that

Let g be the polygonal boundary of the convex set F' C R3. Show

gzl/xxdx
2 /g

is the right-handed area vector.

10.4.7. (3) Let P = {(’U,,’U) c [0, 1]2 . U2 +U2 < 1}7 g(u7’[)) = (’U,,U,u2 —’-1)2)7

F = g(P) and f(x,y,2) = (z,y,2). Rewrite the following surface integrals
as Riemann integrals of one or more variables.

/FCT§; /F|dS|;/f7(T§ /fxcﬁ

Compute the surface area of a sphere of radius r using the
divergence theorem for the vector field f(x,y, z) = (z,y, 2).

10.4.8. (4)

10.4.9. (9) Let F be a continuously differentiable parametric surface in R?

that is bounded by the closed simple and rectifiable curve g in such a way
that the preimage of ¢ in the parametrization is positively oriented. Show
that if f: R? — R3 is continuously differentiable, then

/F<rotf, cI’9>:/g<f, da) .

10.4.10. (4) Let B = {(m,y,z) al 4?22 < 1} and f(z,y,2) = (yz,x —
2,2 —9).
f, a8) =2
L, ()
10.4.11. (4) Let B = {(m,y,z) a2y 422 < 1} and f(z,y,2) = (yz,x —
sz_y)

/{)fo 48 =2
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10.4.12. (7) Let G cC RQ be Slmply connected open and let g: [O, 1] — G be a

simple closed rectifiable curve with positive orientation. Let also A C G be
the bounded component of R?\ g and f : G — R3 continuously differentiable.
Show that

1
/(Dmfnyf)dxdy:f/ x % dx.
A 2 Jyoq

10.4.13. (5) Let fi(x,y,2) = xyz and fo(z,y, 2) = 22 + y? + 22, Construct
a function f3 : R® — R so that the surface integral of vector field (fi, fa, f3)
along any closed sphere is the volume of the enclosed ball.

10.4.14. (8) (a) Let G C R?® and ¢4(u,v) : [0,1]*> — G be a family of contin-

uously differentiable parametric surfaces for which ¢;(u,v) is independent of

t for any boundary point (u,v) of the unit square. Let also F': G — R3 be

continuously differentiable and irrotational. Show that the integral

1 1
1(t) = / / (Due(2,5) x Dye(e,9), Fler(z,y)) dz dy

does not depend on t.

(b) Let G = R3\ {(0,0,0)}. Give an irrotational H — R? vector field
whose surface integral along the unit sphere does not vanish.

(c) Show that G is not diffeomorphic to R3.






Chapter 11

Measure Theory

11.1 Set Algebras

11.1.1. (3) Let A and B be o-rings. Describe the o-ring generated by AUB.

11.1.2. (7) What is the smallest possible cardinality of an infinite o-ring?

11.1.3. (5) Let T be the collection of the sets [a,b) X [¢,d).
(a) Show that 7 is a semi-ring.
(b) What ring does T generate?
(c) Show that f: 7 — R is additive if and only if there is g : R? — R for
which f([a,b) x [¢,d)) = g(b,d) — g(a,d) — g(b,c) + g(a,b).
11.1.4. 3) (a) What ring do the half-lines [a, 00) generate?
(b) What o-ring do the half-lines [a, c0) generate?
(¢c) What is the smallest cardinality of a generating set of the o-ring of
Borel sets?

11.1.5. (5) Show that all open sets are F,,, and all closed sets are Gj.

11.1.6. (7) Prove that if f : R — R, then the set of points of continuity is

Borel, and give as small as possible of Borel class (e.g. Gss505060), t0 which

it still belongs.

Prove that sets with property F,, respectively Gy, are closed to
finite union and intersection.

11.1.7. (6)

139
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11.1.8. (5) Show that Fy556(R™) C Gsosos(R™).

11.1.9. (7) Let f, : [a,b] — R be continuous for all n. Prove that {z :

fn(x) convergent} is a Borel set, and give a Borel class as small as possible
to which it still belongs.

11.2 Measures and Outer Measures

11.2.1. (8)
AG) < e.

For any € > 0 give G C R which is open and dense and for which

11.2.2. (8) Construct a Borel set H C R for which A((a,b) N H) > 0 and
A((a,b) \ H) > 0 for any a < b.

11.2.3. (5) Let p be a translation-invariant measure on the Borel sets of
R, for which u([O, 1]) < o0o. Show that p is the Lebesgue measure up to a
constant multiple.

11.2.4- ©) ] Ghow that if H C R satisfies A(a,b) N H) < ﬁ(b —a) for all

100
a < b, then H is a null-set.

11.2.5. (9) Can one find continuum many Lebesgue measurable sets in [0, 1]

all of measure 1/2 such that for any two the intersection has measure 1,/4?

11.2.6. (4) Let f: R — R be monotonically increasing and for all a < b let
1(la,b]) = f(b+0) — f(a —0). What measure does this generate?

11.2.7. (5) Let f : R — R be monotonically increasing and p s the Lebesgue—

Stieltjes measure generated by f. Show that for any Borel set H there are

F, B C H and G5 K D H sets for which pu;(B) = pus(K) = us(H).
11.2.8. (8) (a) Show that if A C R? is measurable and A(A) > 0, then A— A
contains a ball centered at the origin (Steinhaus).

(b) Show that if A, B C RP are measurable with positive measure, then
A + B has a non-empty interior.

(¢) Show that if A C RP measurable with positive measure and B C RP
has positive outer measure, then A + B has a non-empty interior.
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11.3 Measurable Functions. Integral

11.3.1. (2) Prove that if f : R — R is monotonic, then it is Borel-

measurable.

11.3.2. (2) Prove that the composition of Borel-measurable functions is

Borel-measurable.

11.3.3. (4) Show that if f : [a,b] — R is Lebesgue-measurable, then there is
g : [a,b] — R Borel-measurable such that f = g a.e.

11.3.4. (9) Construct a function f : [0,1] — R whose restriction to any set

with full measure is not continuous.

11.3.5. (2) Let f: R — R be Borel-measurable, and g : M — R measurable
for some (M, u) measure space. Prove that f o g is y-measurable.

11.3.6. (2) True or false? If f : [a,b] — R is Riemann-integrable, then it is

Borel-measurable.
1 z€A
0 z¢ A

11.3.7. (2) Let A C R be Lebesgue-measurable and x4(z) = {

Show that [, x4 dX = A(A).

11.3.8. (5) Show that if f > 0 on a p-measurable A such that u(A) > 0,
then fAfdu> 0.

11.3.9. (7) True or false? If f[a,b] — R is bounded and Lebesgue-integrable,
then there is a g : [a,b] — R that is Riemann-integrable and for which f =g
a.e.

11.3.10. (5)

Is there any measurable function f: R — [0, 00), whose integral
over any interval is +00?

11.4 Integrating Sequences and Series of Func-
tions

11.4.1. (8) True or false? If f,, : R — R are Lebesgue-measurable, then they

have a subsequence that converges a.e.
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11.4.2. (4) Apply Lebesgue’s monotone convergence theorem to calculate

n

lim (1 + E) e~ 2% dx.
0

n—00 n

11.4.3. (4) True or false? If f; > fo > ... are non-negative and Lebesgue-

measurable, then

lim / fodA = / (lim £,,) d.

11.4.4. (4) Let A = {1,2}, and let u : A — R be the counting measure.

State and explain Fatou’s lemma in this situation.

11.4.5. (5) Give a sequence f, : [0,1] — R that converges pointwise, for

which lim fol fn exists but lim fol fn # fol lim f,,.

11.4.6. (4) Derive the monotone convergence theorem from Fatou’s lemma.

11.4.7. (3) State the dominated convergence theorem for series.

11.4.8. (5) True or false? If f, is non-negative and p-measurable on a
p-measurable set A and [, fndp < 1/n, then f, — 0 p-a.e.

11.4.9. (5) Show using the Borel-Cantelli lemma that if f,, is non-negative
and g-measurable on a p-measurable set A and [ afndp <1/ n?, then f, — 0
j-a.e.

11.4.10. (4) Show using the Beppo Levi’s theorem that if f;,, is non-negative
and p-measurable on a y-measurable set A and [, fpdp < 1/n?, then f, — 0
j-a.e.

11.4.11. (8) Show without Lebesgue theory that if f, : [0,1] — [0,1] is

continuous for all n and f,(x) — 0 for all = € [0, 1], then fol fn(z) dz — 0!

11.5 Fubini Theorem

11.5.1. (6) Assume the continuum hypothesis and let < be a well-ordering
of [0,1] of type wy. Let

A={(z,y) €[0,1]*: z < y}.
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(a) Show that the horizontal sections of A are null-sets.

(b) Show that the vertical sections of A have full measure.

(c) Show that A is non-measurable with respect to 2-dimensional Lebesgue
measure.

11.6 Differentiation

11.6.1. (2) What is the Radon-Nikodym derivative of the Lebesgue mea-

sure?
11.6.2. (3) Assume that f : R — R is Lipschitz, and Va,y |f(x) — f(y)| <
Kz —yl.

(a) Show that f is the integral-function of a Lebesgue-measurable g.
(b) Show that |g| < K a.e.

L35 (9) True or false? If f is absolutely continuous and strictly increasing

on [a, b], then its inverse is also absolutely continuous.

Prove that if f and g are absolutely continuous on [a, ], then
f - g is also absolutely continuous on [a, b].

11.6.4. (4)

11.6.5. (5) Let f : C — [0,1] be the Cantor function. For each H C [0, 1]
Borel set let i1 (H) = A(f(H 1 C)), pa(H) = A(f~1(H)) and i = iz + rz.
Which pairs of the measures p1, po, p3 and A are singular, absolutely contin-
uous? What is the Lebesgue decomposition of the measures p; with respect
to Lebesgue measure? What is the Lebesgue decomposition of Lebesgue
measure with respect to the u;?

11.6.6. (7) Construct a strictly increasing singular function on [0, 1].

f:[0,1] = R satisfies |f(z) — f(y)| < |z —y| for all z,y € [0,1].

Show that for all € > 0 the graph of f can be covered with countably many
rectangles (not necessarily parallel to the axis) in such a way that the sum
of the shorter sides is less than €.

(Vojtech Jarnik competition, 2010)






Chapter 12
Complex differentiability

12.0.1 Complex numbers

n . n n n P
0 3 6 e =7
Let a,b,c € C. What is the geometric interpretation of

%Im <(c—a)-m)?

12.0.1. (3)

12.0.2. (3)

12.0.3. (4) Assume that w : C — C is a distance preserving map. Show that
w(z) = Az + B or w(z) = AZ 4+ B, where |A] = 1.

12.0.4. (2) What are the product, the sum and the sum of squares of the

complex mth roots of unity?

What is the product, the sum, and the sum of squares of all
primitive m-th roots of unity?

12.0.6. (3)

12.0.5. (5)

Let A1 A5 ... A, be the vertices of a regular n-gon, inscribed into
a unit circle, and let P be another point on the circle. Prove that

PA,-PAy-...-PA, <2

145
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12.0.7. (5) Let p(z) € C[z] be of degree at least 1. Prove the following

P'(2)
p(z)
(b) If the roots of p(z) all lie in the half plane Rez < 0, then the same
holds for p’(z).
(¢) (Gauss) If p(z) € C[z], then the roots of p" are contained in the convex
hull of the roots of p.

(a) If all roots of p have negative real parts, then Re > 0.

12.0.8. (7) Let f(z) € C be non-constant. Prove the following

(a) Re f and Im f have no local extrema.
(b) If | f| has a local extremum at zg, then f(zy) = 0.
(c) Prove the fundamental theorem of algebra.

208 () Let n > 2 and u; = 1,us9,...,u, be complex numbers with
absolute value at most 1, and let

fR)=GE—-u)(z—u2)...(z — up)-

Show that the polynomial f’(z) has a root with non-negative real part.
KoMalL A. 430.

Let w(z) = 3 (2 + 1) be the so-called Zhukowksy map. What is
the image of
(a) the unit circle?
b) the interior of the unit circle?
d

12.0.10. (3)

(
(c) the exterior of the unit circle?

(d) the circles with center 07

(e) the lines passing through 07

Related problem: 12.1.1

12.0.11. (3) Sketch the set of those complex numbers for which
z—1 z—1
= . b = 2'
(2) z+1 ‘ ’ (b) z+1 ’

(c) arg(z + 1) = arg(22 — 1) (-7 <argz <m).

12.0.12. (3) Sketch the set of those complex numbers for which
-1
(a) Re(z?)=4;  (b)Re—— =0; (c)0< Re(iz) < 2;

- z+1
(@) Jarg(2)] < .
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12.0.13. (3) Sketch the set of those complex numbers for which
1
(a) % <K; (b)|z=1+|z+1 <4 (¢ Reltz > 0.
12.0.14. (7)

Let k(z) = ﬁ be the so-called Koebe map. What is the

image of the unit disc under the Koebe map?
12.0.15. (8) Let f € C[z] and let T be a rectangle such that f has no root on

the boundary of T'. Show that the number of roots of f inside T" agrees with

the winding number about 0 of the image of the boundary of T under f.
12.0.16. (5) Let m > 1 and a,b : Z,, — C be two functions. Define the sum
a + b and the convolution a * b of a and b as follows

—

m—

(a+0b)(n) = a(n) + b(n); (a*b)(n) = Z a(k)b(n — k).

k=0

Prove that this makes the set of complex valued functions on Z,, a commu-

tative ring with unit.
12.0.17. (6) 2

Let ¢ = cos %’T + ¢sin 2%, Define the Fourier transform of a

function a : Z,, — C by

Show that (a + b)(n) = a(n) - b(n).

12.0.18. (8) Find a formula for Fourier inversion in case of the finite Fourier

transform.
12.0.19. (9) Let f : C — C be a continuous function for which lim M =1
Z—r 00 zZ
(i.e. fz) — 11if |z| = 00). Show that the image of f is C.
z
12.0.20. (6) Let a1, a9, ... be a decreasing sequence of positive numbers that
converges to 0, and let by, bo, . .. be a sequence of complex numbers such that

the partial sums b; + ... + b, are bounded by a constant independent of n.
o0

Prove that Z anby, is convergent.

n=1



148 12. COMPLEX DIFFERENTIABILITY

12.0.21. (9) Consider C as the zy-plane in 3-space and pick 2 semicircles in

the upper half space whose end points are the complex numbers a, b and ¢, d.
Show that the two semicircles intersect each other orthogonally if and only
if (a,b,¢,d) = —1.

(Riesz competition, 1988)

12.0.2 The Riemann sphere

12.0.22. (9) Stereographic projection (see figure) gives a bijection between

points on the unit sphere and the set CU {o0}.
(a) Under this identification what transformations of the sphere arise from
the following complex functions?

. 1 -1 z—1
Z iz Z = Z = — Z
z

3 —

2 =z 2=z

1—12

(b) What complex functions correspond to rotations of the sphere?

12.1 Regular functions

12.1.1 Complex differentiability

12.1.1. (6) Apply the conformal property of complex differentiable functions

to the Zhukowsky map to show that the ellipses and hyperbolas with foci —1
and 1 intersect each other orthogonally.
Related problem: 12.0.10

12.1.2. (3) At what complex numbers is Im z - Re? z - i + z differentiable?
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12.1.3. (3) At what complex numbers is Im? z + Re z + % differentiable?

12.1.4. (3) At what complex numbers is |z|? — (2 + i)z differentiable?

12.1.5. (3) Do these functions satisfy the Cauchy-Riemann equations?

(2% + 92, 2ay); (z% — 92, 22y); (e* cosy, e siny).

12.1.6. (3) Show that f(x,y) = v/|zy| is not differentiable at 0 even though

it satisfies the Cauchy—Riemann equations there.
12.1.7. (5) Let f be regular on the domain D with image D’. Assume that

f is injective and let the area of D’ be A(D’).
(a) Prove that

AD") = [ If'(2)]* dz dy.
/

(b) Compare with the theorem on R? — R? functions.

12.1.2 The Cauchy—-Riemann equations

12.1.8. (4) Show that if f(z) is differentiable at zo, then so is g(z) := f(%)
at zg.

12.1.9. (4) If f is entire, then so is g(z) := f(Z).

12.1.10. (5)

Let D C R? be an open domain and u,v : D — R? twice
differentiable for which the map = + yi — u(z,y) + iv(z,y) is regular on D.
Show that

Pu  Pu 0
Ox? + oz

12.2 Power series

12.2.1 Domain of convergence

n® —n)!
What is the radius of convergence of the series Z (37)

0

12.2.1. (3) o
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12.2.2. (4) Show that if f is the sum of a power series that converges on a

disc of radius R around zg, then the average of f around a circle of radius
r < R centered at zg is f(z0).

> 92
12.2.3. (4) For which z € C is Z g—n(z + 2i)™ convergent?
n=1

12.2.4. (4) For which z € Cis nZ::l 15 (z4+1—2¢)" convergent? Absolutely
convergent?
12.2.5. (4)

Find the Taylor series of 1/(2? — 1) around —2i and determine
its radius of convergence.

12.2.6. (4) Find the Taylor series of 1/z around 4 and determine its radius
of convergence.

12.2.7. (4) Find the Taylor series of 1/(2% — 1) around i and determine its
radius of convergence.

12.2.8. (3) Find the radius of convergence of the following series. At which

points do they converge, do they converge absolutely? What is their termwise

derivative, antiderivative and what is the radius of convergence of those se-

ries? What is the largest disc with the same center as the power series to

which these functions extend as regular functions?

ZZ:OZ”; z;o(nJrl)(erl)" Z(z;i'z)”’ Z%

n=0 n=1

X _n
12.2.9. (5) (a) f(z) = Z = converges at all points on the unit circle except
n
0
z=1.

(b) The function can be analytically continued along any of these points.

12.2.2 Regularity of power series

o0
12.2.10. (6) Assume that Zanz" is convergent in the unit disc and is

n=0
injective there. Express the area of the image of the unit disc in terms of the
coefficients a,,.
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(o)
12.2.11. (6) [(Parseval formula for power series)] Assume that f(z) = Z anz"
n=1

is convergent on the disc |z| < r + e. Prove that

1 2 — 2,2
sl MUCIREEED I
|z|=r n=

12.2.3 Taylor series

12.2.12. (5) Find the first four terms of the Taylor series around 0 of the

following functions:

1 -1
a) tan z b) : ¢

pr— c) e d)

sin z

12.3 Elementary functions

12.3.1 The complex exponential and trigonometric func-

tions
1 1
12.3.1. (7) Let f(0) =0and f(2) = g when z # 0. Is f differentiable
at 07
12.3.2. (4) Show that the only periods of sin z are 2k, for k£ an integer.
12.3.3. (6)

Let D. be the domain that one gets by deleting discs with center
kr (k € Z) and radius e < 7/2. Show that both 1/sin z and cot z are bounded
on D..

12.3.4. (3)

—1/z*

Does e have a limit at 07

12.3.5. (5) Does any of the functions e??, sin z, cos z, tan z, cot z have a limit

as Im z — +o00?

12.3.6. (3) Prove that

sin(z1 4 22) = sin 21 cos 2o + cos 21 sin 29

and
cos(z1 + 2z2) = €os 21 COS 2o — sin 21 sin zo.
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12.3.7. (4) Use the Cauchy product of the series that define the complex

exponential to show that et = e?e®.

12.3.8. (3) Prove that the following equations have only real roots a)

zsinz =1 b) tanz = z.

12.3.2 Complex logarithm

12.3.9. (5) If f is regular and non-vanishing on the star-shaped domain D

prove that the antiderivative of f’/f defines log f as a regular function on
D.

12.3.10. (5) Let ¢ € C and for Rez > —1 let f(z) = (1 + 2)° = exp(c-

log(1+ z)), where log is the principal branch. For what ¢ can f be continued
through —17?

12.3.11. (4) Take the branch of logarithm on C\{z + iy : z > 0,y = sinz}
for which log1 = 0. What is log(e3/?) for this branch?

12.3.12. (4) What are the possible values of

eﬂ,emm

log(3 + V/3i)?

12.3.13. (6) (a) Show that if f : C — C is continuous and non-vanishing, then

arg f, log f, f* (for any a € C) can be defined as continuous functions on C.
(b) Prove the fundamental theorem of algebra using the function z +
p(z) and the Brouwer fixed-point theorem.

n

c

12.3.14. (8) Can one prove the fundamental theorem of algebra by applying
the Brouwer fixed-point theorem to z + af(bz + ¢) with suitable a, b, ¢?

12.3.15. (9) On the domain in the figure f(z) = +/cosz can be defined
regularly such that f(0) =1. What is f(—m)?
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|
(SIE

12.3.16. (9) On the domain in the figure f(z) = fOSZ
—z

regularly such that f(0) = 1.What is f(—m)?

can be defined

|

|
NIE]
(@)
3

12.3.17. (9) On the domain in the figure f(z) = logcosz can be defined
regularly such that f(0) = 0. What is f(7)?

12.3.18. (6) Sketch the following sets of the complex plane:
. a0 1-=2
{e:0<Rez<1,0<Imz<f}; log Rez>0¢;
2 1+z2

{cosz: O<Rez<g,0<lmz}; {sinz: O<Rez<g,0>lmz}.
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12.3.19. (5) Determine the image of the following maps:
a) w(z) =logz D = C\(—0,0]
b) w(z) = log 2 D={|z| > 1, Imz > 0}
¢) w(z) =tanz D ={0<Rez <7}
d) w(z) = cot z D ={0<Rez < nw/4}

) w(z) =sinz D={0<Rez<2m, Imz >0}

@

12.3.20. (4) At which points is the regular branch of log(1l + z) differen-
tiable? What are the Taylor coefficients at 07 At 17 What is the radius of
convergence?



Chapter 13

The Complex Line Integral
and its Applications

13.0.3 The complex line integral

13.0.1. (4) Find the following integrals:

a) /Im(z)dz b) /Edz c) /ezdz

|z|=1 |z|=1 [0,144]

1 ) 1
z f -
d) / ; dz e) |z|” dz ) / R dz

|z]=1 [L,i] |z]=2
13.0.2. (3) Let T'; be the union of (0,1) and (1,1 + ¢) oriented from 0 to
1+, let I's be the segment from 0 to 1 + 4 and let I's be the parabolic arc

on Imz = (Rez)? from 0 to 1 + 4. Calulate [, z* from the definition.
J

13.0.3. (3) Find the following integrals:

/Imz~Rezdz; /Edz; /\z|2dz.

l2l=1 |2j=1 [1,i]

13.0.4. (3) Let v be the parabolic arc on Im z = (Re 2)? from —1+1 to 1 +i.

/\z|2a 7
A

155
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13.0.5. (3) Let I’ be the parabolic arc on Imz = (Rez)? from 0 to 1 + .

Find the following integrals:

/22 dz; /22\ dz|; /,z?@; / |22| - | dz|; / 22| - Im dz.
r r r r r

For which ones can the fundamental theorem of calculus of complex line
integrals be applied?

13.0.6. (3) Determine the complex line integral of 1/z along a positively

oriented circle of center 0 with radius 7.

13.0.7. (3)

Let r > 0 and n € Z. Find / Z" dz.

|z|=r

13.0.8. (7) Of the roots of the polynomial p(z), k is in {z : |z| < r}; the
others are outside. Let v(t) = p(re®) (0 <t < 2m).
(a) How can f,y 4% be computed using a substitution?
(b) What is the index of « around 07?
13.0.9. (7) Let D C C simply connected and f : D — C univalent. Prove
that f(D) is also simply connected.

13.0.4 Cauchy’s theorem

13.0.10. (7) Show that for all a € C

(oo}
/ e~ /2. glaw Qg — \for . em97/2,

— 00

13.0.11. (5) Let p(2) = 2"+ b,_12" 1+ + b1z + by have degree n > 1 and

1 d
no roots in |z| > R. Let I(R) / —“%_ Show that
|z

" 2mi Jyen p(2)
(a) ngréo I(R) = 0; (b) I(R) is constant. (¢) I(R) =0.
13.0.12. (5)

Find the following integrals:

a) /ezdz b)/%dz C)/%—il

[0,144] |2j=1 |z]=2
(T is the square with vertices =1 4 ¢ oriented positively.)
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13.0.13. (6) Let D be a simply connected domain that does not contain the

origin.
(a) Show that 1/z has an antiderivative on D.
(b) Show that if ¢’(z) = 1/z on D, then ze~9(*) is constant.
(¢) Show that log z has a continuous branch on D.
13.0.14. (6) Let D be a simply connected domain and f(z) a non-vanishing
holomorphic function on D.
(a) Show that f/(2)/f(z) has an antiderivative on D.
(b) Show that if ¢’ = f'/f on D, then f(z)e 9(*) is constant on D.
(¢) Show that log f has a continuous branch on D.
13.0.15. (5) Let a and b be different complex numbers. Show that on C\ [a, b]

there is a holomorphic branch of log Z=3.

13.1 The Cauchy formula

13.1.1. (8) Let f be a holomorphic function on the disc |z| < 1+ ¢ and let

la] < 1. Find a function ¢, : [0,27] — R such that

1 27

f(a) f(e®)pa(t)dt.

:% ;

13.1.2. (8) Prove for any complex number a that

2 log|a| if |a] > 1,

0 if |a| < 1.

o | log|e“+a| dt—{

13.1.3. (6) Let f be continuous on the closed unit disc and holomorphic in

its interior. Prove that for |z] <1

fo) = G

C2mi |z]=1 2 — &

13.1.4. (8)
that

Let f be a holomorphic function on the disc |z| < 1+ ¢. Prove

1 2m i
oz |7(0) < 5= [ ozl )] at.

When does equality hold?
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13.1.5. (7) Let n e Z F]nd

/W CENCET

13.1.6. (4)

1 coS z e? e?
— dz =7 — dz =7 dz =7
21 |z|=5 z |z|=3 z |z|=3 z—2

13.1.7. (7) Let a,b € C and |b| < 1. Prove that

1 2

27 Jiz1=1

zZ—a

z—0b

ja —b|?

= 1.

[Hint%] (_Solution— )

13.1.8. (2)

) The function f(z) is holomorphic in the interior of the unit disc

(lz] < 1) and |f| < 1. How large can |f"’(0)| be?

13.1.10. (5) Show that if f € O(z| < 1), then a) f/(z)(1—|2]) is

bounded.
b) What can we say about the n-th derivative?

13.1.11. (3)

1 / Cos z / e? / e
— dz =7 — dz =7 ——dz =7
2mi Jypj=s 22 |2|=3 2% zj=3 (2 — 2)3
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13.1.12. (3) For a,r > 0 find the following integrals:

+
211

z|=r

1 z
a®dz; — / a— z; / a dz;
27 z 27i z+1

‘ =
83

[\
=
ok

~
I
1

|z|=r

7 e
211 z+2

13.2 Power and Laurent series expansions

13.2.1 Power series expansion and Liouville’s theorem

13.2.1. (9)

The sequence ao, ai, ..., is defined recursively by ag = —1 and the

requirement E

— kJr T =0 for all n > 1. Show that for all

n>1a,> O (IMO Shortlist, 2006)

Use complex analysis to solve this probem by showing that

13.2.2. (5)

/°° dz
an = 5 :
1 z(7w? + log”(x — 1))

Let f(z Zanz be entire that satisfies |f(2)| < e/*. Prove

n=0

that [a,| < (£)".

13.2.3. (9)

Prove that if f is entire and its image is disjoint from the real

interval [—1, 1], then f is constant.
Related problem: 12.0.10

13.2.4. (7)

is constant.
13.2.5. (4)

or above.

Show that if f is a double peridodic entire function (i.e. f(z+a) =
f(2), f(z+b) =

f(2) where a and b are linearly independent over Q, then f

Let f € O(C). Then Re f cannot be bounded either from below
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13.2.6. (3) 24

z
Find the Taylor series of — around 1.
z

Ny

13.2.7. (5)
0.

13.2.8. (4)

Find the Taylor series of (1 + )¢ = exp (¢ - log(1 + z)) around

Describe those f € O(C) which do not take positive values.

13.2.9. (6) Assume that f : C «» C is a biholomorphism. Show that
f(z)=Az+ B.

13.2.2 Laurent series
13.2.10. (6) Assume that f has antiderivatives of all order on the set 1 <
|z| < 2. Show that f has an analytic continuation to |z| < 2.

Related problem: 14.2.4

13.2.11. (5) (Parseval formula for Laurent series) Assume that
flz)= Z anz™ converges on r — & < |z| < r+e. Prove that
n=-—oo
1 oo
g | VR d= 3 e
|2l=r S
13.2.12. (5) e
Find the Laurent series of 1 around 0 on |z| > 1.
13.2.13. (7) Compute the coefficients of the Laurent expansion of f(z) =
—————— on 1 < |z| < 2 by using the Cauchy formula.
G-2)+1) 12 v USIg Y
223 —1
13.2.14. (3) Find the Laurent series of ZQT around ¢, on 1 < |z —i| <
224z
V2.
13.2.15. (3) Find the Laurent series of z — ————— around 3 on |z — 3] <1,
22—-32+42

|z—3|>2and 1 < |z —3| < 2.

13.2.16. (3)

Find the Laurent series of T inl<|z—2|<3.
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13.2.17. (3) Find the Laurent series of around 3 (within a disc of radius
2).
13.2.18. (5) Find the Laurent series of e**/* around 0.

13.3 Local properties of holomorphic functions

13.3.1 Consequences of analyticity

L2341 () An entire function f(2) satisfies |f(1/n)| =1/n? forn=1,2,...,
and |f(#)| = 2. What are the possible values of |f(—i)|?

(Hint— ) ( Solution— )

13.3.2. (7) Show that if f takes only real values on the real and imaginary

axes, then f is even.

Give an example of a function that is holomorphic in the open

unit disc and has infinitely many roots there.

Assume that f € O(C) and |f(z)| =1 for all z € R. Prove that

13.3.3. (5)

13.3.4. (6)

m If f e O(z] > 1), is bounded and f(n) =0 (n=2,3,...),
then f = 0.

13.3.6. (7) Show that if f € O(C), 'f (1)‘ < ZL’ then f = 0. Can one do
n n
better?
13.3.7. (8) 1

2

Given that f € O(C), f <n> = cos% find f(-1).

13.3.2 The maximum principle

13.3.8. (7) Let f be continuous on the closed unit disc and holomorphic
inside. Let A = [Jnax |f(e®)] and B = max |f(e'’)|. Show that |f(0)| <

T<t<l2m
VAB.
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13.3.9. (5) Let f be continuous on the closed unit disc and holomorphic

inside. Show that the image of the open disc is in the convex hull of the
image of the boundary circle.

13.3.10. (5) Prove that if f is holomorphic on an open set, then neither the

real part nor the imaginary part of f has a local extrema.

13.3.11. (9) [ (Hadamard)] Let 0 < 7 < ro < r3 and let f be holomorphic

on r1 < |z| < r3 with a continuous extension to the boundary. Prove that

log(rs/r1) log(rs/r2) log(r2/r1)
((max 1) < (max 172 (mxisen)

z|=r2 z|=r1 z|=r3

13.4 Isolated singularities and residue formula

13.4.1 Singularities

13.4.1. (4)

Prove that =%~ and —*— — % have removable singularities at 0.

sin z sin z
13.4.2. (5) Assume that f has a pole of order m at a and that p is a
polynomial of degree n. Show that p (f(z)) has a pole of order mn at a.
13.4.3. (7) Can ef have a pole at a point where f has an isolated singular-
ity?
13.4.4. (4) Show that if f is holomorphic and bounded on |z| > 1, then it
has a limit at oo.

13.4.2 Cauchy’s theorem on residues

13.4.5. (4) If f € M(]z] < 1), then f has an antiderivative if and only if the

residue of f is 0 at all singularities.

13.4.6. (5) Calculate the first 6 terms in the Laurent series of cot z and

cotz cotz
mcot(mz) on the domain 0 < |z| < w. What are the residues of s 5
z z

cotz .
. in 07
5
z
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13.4.7. (4)

1

27 |z|=2

tanz dz =7

13.4.8. (4)

13.4.9. (3) What are the singularities of 7 cot 727 Find the residues at these

points.

13.4.10. (4)

dz _9
T COS 2

13.4.11. (4) Let T be the curve shown in the figure.

r

Y
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(a) Compute /
22 _

(b) Compute /

13.4.12. (4)

13.4.13. (5)

13.4.14. (5)

13.4.15. (4)

dz.

dz.
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13.4.16. (4) Let 0 <7 <. / dz =7
sin z
|z|=r
13.4.17. (7) Show that if the complex numbers a1, ..., a, are all different and
p(z) =(z—a1)-...- (2 —ay), then
QAN

2 W/{a)?

13.4.18. (5)

2
z
— dz =7
|z|=5 S 2

z
/ . dz =?
|Z_2‘:4 sin z

13.4.19. (4)

13.4.3 Residue calculus

13.4.20. (5) Find the residues of tan z, tan? z, tan® z in 2.
t z
13.4.21. (5) What are the residues of ans and ¢ - in 07
1—cosz tan z — sin z

13.4.22. (4) Find the singularities and residues of the following functions:

1 1 1 .1 e? e?
) ; 5 SHl—g ; ;
z 22 2242z sin z 27 22447 (224 4)2

e? e —z3+38

(2+47 241

13.4.23. (5) Let f and g be holomorphic in a neighborhood of z.

/ f(20)

(a) Assume that g has a simple zero in zp. Prove that Res =~ = = .
% g  g(2)

(b) Assume that g has a double zero in zg. Express Res = in terms of
Z0 g

Taylor coefficients of f and g.
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13.4.24. (7)

13.4.25. (4)

1

—_ tanz dz =7
21

|z|=5

13.4.4 Applications
Evaluation of series

13.4.26. (5)

2 _1°
k 1

o0
Use residues to calculate Z Check your result using
k=1

elementary methods.

13.4.27. (5)

kPt kt+l
(The result should not contain any complex number!)
13.4.28. (5)

7 cot(mz)

Use residue calculus of the function 5
z

to prove that
2

1
Y=
k=1
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13.4.
13.4.29. (5)
She SEbe S
4 2 _ 1 2
s k Pt k i P k241
13.4.30. (5)
> g
2k2 —1
k=—oc0
13.4.31. (5) ] 1. Ny, be the square with vertices +(k + ) & (k+ 1)i. What is
1 t
L meotmz 4,
21 N, z2

What identity results if we let k — oco?

Evaluation of integrals

13.4.32. (4)
/ dz 9
o 741

(Simplify as much as possible.)

13.4.33. (4) Let a € (07 1)
/ ;; dv =
o T24+1

13.4.34. (6)

o0
/ C2OSCU du =7
0 X +1

13.4.35. (7)
fe’e) 2
5 / log” x Ay —2
0

* dr *  logx
=7 —————— dx =7
x4+ 1 0 T2+x+1 x2+1

S—
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13.4.36. (6)

13.4.37. (6)

13.4.38. (5)

13.4.39. (5)

13.4.40. (9)

13.4.41. (7)

13.4.42. (7)

13.4.43. (5)

13.4.44. (9)

13.4.45. (7)

/ dz o
=2 (214 22)sinz

/ dz o
|2)=2 (22 + 1) sinz o

a) /cosa:2dx =7 b) / sin(3z? + 1)dz =?
0 —00

x at
© _dt=?
14 et

— 00

0<a<l)

100
cosh Az

_/ (z + 1)(z+2)dz =7

(A >0)

T o4

- —1
/xﬁ—ldx_?
/2

/ log sin xdx =7
0

(x —3)cosx B
22 — 65 +100 U

-~

/

— 00
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rsinx

13.4.46. (6) a)/ COSAT 4 (a>0) b)/ Az
0

$2+a2 .’II2+CL2

0

13.4.47. (6)

/Oo VT gy 2o /m <" /msjnxdm:?
0 w3 +1 oo Tt +1 0o

1 3
13.4.48. Determine for any a > 0 the value of the integral o / 1a752 dé.
i —

|z]=2

o+1

tZ
13.4.49 / A (6>0, 0<t<1)

(7)
- (7)

a)/ “dz=? b / (L,dzz?
. (5)

13.4.51

e'iz e* 1
———dz=7 b dz =7 dz =7
2) 11 2% ) / sin?z © / 17
|z—i|=1 |z—m|=1 |z—2mi|=1
eZ
d -9
) / cosz— 1 N
|z|=m
13.4.52. (5)

What residues are possible for f'/f at zo if f has an isolated
singularity in that point?

13.4.53. (6) Let I'; g be the curve in the figure, where R is large, r is

small and e is much smaller than r. What results from the following limit?

. . 3 1 log z
lim lim lim — dz
R—oor—+0e—+0 2mi Jp 22 +1
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—
>

‘ &
N
R
13.4.54. (5)
1 27
L it —it ndt =7
o |, (e +e™)
13.4.55. (7) Let a > 0. Determine
aZ
/ o dz
Re 2=0
13.4.56. (4 21 1
.4.56. (4) a) /7dz:? b) / dz =t
= ZEEDRREEE
j2i=2 ==
13.4.57. (9) >

Assume that the Dirichlet series f(s) = Z a—z absolutely con-
n

n=1
verges for Res > 1 and let X > 0 be real. Find the following integrals:

1 X® 1 X°
lim 7/ f(2) : f(2) 2
h—00 270 JRe s=1,|Tm s|<h s 270 JRe s=1 s

1 X

2mi Res=1 S+ 1)

13.4.5 The argument principle and Rouché’s theorem

13.4.58. (3)

disc?

How many zeros does the function cosz = 223 have in the unit
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13.4.59. (3) How many zeros do the functions have on the given domain?
(a) sin z = 222, |z <1
(b) 2+ 2% 4z +1=0, 1<[z<2
(c) 2% — 62+ 10, |z| > 1.

13.4.60. (3) Let |a| = 3. Find the number of zeros of 2z* + 2% +az — 1 in the

domain 1 < |z] < 2.

13.4.61. (3) How many zeros does 2° + 322 — z have in the unit disc?

13.4.62. (5) Prove the fundamental theorem of algebra from Rouché’s theo-

rem.

13.4.63. (4) Prove that az™+3z+1 has a root in the unit disc for any a € C.

13.4.64. (5) Let a € C, |a| < 1, n € N. Show that (z — 1)"e* = a has exactly

n solutions in the half-plane Re z > 0.






Chapter 14

Conformal maps

14.1 Fractional linear transformations

21 — %3
Z9 — 23

14.1.1. (4)

(a) Prove that (z1, 22, 23) := is real if and only if 21, 29

and z3 are on a line.
. 21 —R3 Rl 24 .
(b) Prove that the cross-ratio (21, 22, 23, 24) := : is real if
R2 —R3 22T X4

and only if 21, 29, 23 and z4 are on a circline.

14.1.2. (5) Prove that a map that preserves the cross-ratio is necessarily a

fractional linear transfromation.

14.1.3. (3)

1 1 1 1)

Show that the map 1/z preserves cross-ratio, i.e. (Z’ e

(21, 22, 23, 24). Find other maps with this property.

14.1.4. (5) Show that if a map takes even one circle to a circle, then it is a

fractional linear transformation.
14.1.5. (6) Assume that f,, € O(D) and f, — f (# const.) uniformly on
D. Show that if for all n there is a circline K, whose image under f, is a
circline, then f takes all circlines to circlines.
14.1.6. (7) What are the finite subgroups of the group of fractional linear
transformations?

14.1.7. (7)

to itself?

What fractional linear transformations map the right half-plane

173
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14.1.8. (3) What is the geometric meaning of the imaginary part of the cross

ratio of four points?

14.1.9. (3) Prove using the behavior of the function at the points 0, co and
1 that Re 2} < 0, if |2| < 1.

14.1.10. (3) Prove using the behavior of the exponent at the points 0, co and
1 that

z+1
e=1| <1 (|]z] <1).

14.1.11. (5) (a) Prove that for all f € C[z] one can find g € C[z] with the
property that g has no roots inside the unit disc and |g(2)] = |f(z)| for
|z| = 1.

(b) Prove the same for meromorphic functions on C. For all meromorphic
f one can find a meromorphic g which has no poles or zeros inside the unit
disc and which satisfies |g| = |f| on the unit circle.

14.1.12. (5) What are the possible poles and zeros of a fractional linear

transformation that maps the unit circle to itself?

14.1.13. (5)

for |z| =17

What are the meromorphic functions f that satisfy |f(z)| = 1

14.1.14. (7) Let f be regular on the disc |z| < 1+ € except for finitely many

poles. Assume that f(0) = 1 and that the zeros and poles of f inside the unit
disc listed with multiplicity are g1, 02, - .., 0n, and p1,pa, .. ., pm respectively.
Prove that

1

L PiP2 - - -Pm
2m |z|=1

0102 ... 0n

log |f(2)] - |dz| = log

(If there are no zeros or poles, then the respective product, that is empty, is

1.)

14.1.15. (6) If the zeros of the regular f : S(0,1) — S(0,1) function are

|ak| < 1 complex numbers (possibly infinitely many), then

£ < |-
1=0
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14.1.16. (5) Prove the following statements.

(a) If T'(2) is a fractional linear transformation, then T has a fixed point
in CU oco.

(b) Given z;, w; (j = 1,2,3) with (2, # z;, wir # w;), then there is a
unique T fractional linear transformation such that T'(z;) = w;.

(c) Describe the fractional linear transformations with 1, 2 or more fixed
points.
14.1.17. (4) (a) Prove that all fractional linear transformations can be ex-
pressed as a composition of translations, rotations, dilations and conjugate
inversion (inversion with respect to the unit circle followed by conjugation).

(b) Derive from this the basic properties of fractional linear transforma-
tions, they are bijective conformal maps of the Riemann sphere to itself that
preserve the cross-ratio and circlines.

14.1.18. (5) Function f is regular on the disc |z| < 1+ e. Show that

21T
log |F(0)] < o / log| £(e™)] dt.

14.1.19. (5) Show that there is exactly one conformal map which

(a) takes a given circle C' to another circle C’ in such a way that it takes
3 prescribed points on C' to 3 prescribed points on C’;

(b) takes a given circle C' to another circle C’ in such a way that it takes
a prescribed point on C to a prescribed point on C’ and a prescribed point
inside C' to a prescribed point inside C”.

14.1.20. (5) Let H be the upper half-plane. Prove that

Aut(H) = {T(z) = %, a, b, c, dER}!

If an element of Aut(H) is represented by a matrix (CCI Z), what matrices

correspond to the same map?

14.2 Riemann mapping theorem

14.2.1. (5) Give a biholomorphic map from D; = {z: |Imz| < 1} to
Dy = Dy \ (—00,0].
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D1 D2

14.2.2. (7)

Find a conformal bijection between the unit disc and the domain
in the figure.

a)‘ b)‘ C)‘
14.2.3. (7) Find conformal bijections between the unit disc and the domains

in the figure.

plane with cut angle domain half plane  half plane with cut disk
sector of disk  disk with cut disk with 2 cuts strip half strip

14.2.4. (9) Let D7 be the green domain in the figure, and Dy the union of

the green and blue parts. Show that if f is regular on D; and for all functions
g that are regular on D5 f - g has an antiderivative on D, then f can be
analytically continued to Ds.



14.2. RIEMANN MAPPING THEOREM 177

Dy

Related problem: 13.2.10

14.2.5. (7) Give a biholomorphic map from Dy = {z: |Imz| < 1} to
Dy={z: |z]<land|z—1—1i]>1}.
14.2.6. (6) Describe explicitly the comformal map in the Riemann mapping
theorem for the following domains:
a) {z: fg<argz<g} b) {z: |z] <1, Imz > 0}
c){z: |2] <1, or Imz < 0} d) C\[0,1]

14.2.7. (5) Let Aut(D) be the group of biholomorphic functions of D to itself.
Show that if f : D <+ D’ is a conformal bijection, then Aut(D) = Aut(D’).

14.2.8. (5) | 1 Di={z: 0<Rez<1, 0<Imz}and Dy ={z: Rez>

0, Imz > 0}. Give a formula for a biholomorphic map Dy — Ds.
14.2.9. (7) Number the domains cut by the coordinate axes and the unit
circles by Roman numerals, as in the figure. Describe all biholomorphisms
that permute these domains.

. | v.

VII. VIII.

What possible permutations arise?
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14.2.10. (5) Find conformal bijections from the domains in the figore and the

upper half-plane Im w > 0!
(a) {z: [z > 1}\[-2,—1]
(b) C\[-1,0]\[1,00) 4
(c) {z: |z| <1, Imz > 0}\ [0, £]
(d) {z: O0<argz <7/2, |z| > 1}\[1 +4,00)

14.2.11. (7) Let F C G complex domains f : S(0,1) + F, g: 5(0,1) « G
conformal bijections such that f(0) = ¢g(0). Show that |f/(0)| < |¢'(0)].

14.3 Schwarz lemma

14.3.1. (5) Let C be a circle, and p a point outside of C. Show that if f

is a fractional linear transformation such that f(C) = C and f(p) = p, then
[f'(p)] = 1.

14.3.2. (6) For all D C C domain and ¢ € D there is a unique r(a, D
radius such that there is a conformal injection f : D <+ S(0,7(a, D)), f(a) =

0, f'(a) = 1.

14.3.3. (6) Let ' Z G and D be complex simply connected domains a € F,
and f: F <> D, g : G <> D conformal bijections such that f(a) = g(a). Show

that [f(a)| > |¢'(a)].

14.3.4. (5) Let P = {z: Rez > 0} be the right half-plane f : P — P regular
and f(1) = 1. Prove that |f/(1)| < 1.

14.3.5. (7) Let T, R € Aut (5(071)) and T(a) — R(a) = 0. Prove that

T = cR for some |c| = 1. Describe Aut (5(0,1)) using this observation.

14.3.6. (7) Assume that f is regular on the unit disc and satisfies | f(z)| < 1.
Show that . )
FCTHP
L=1f()2 — 1
14.3.7. (6)

Let the roots of the regular function f : S(0,1) — S(0,1) be
ai,...,a,. Show that

re <]

- (2] < 1).

a; — 2
— ;2
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14.3.8. (7) Assume that f € O(]z| < 1) has image Rez > 0, and f(0) = 1.
Show that 1 2] 1+ |2
T <@ T
14.3.9. (7) Let w: S(0,1) — S(0,1) be regular and let |a| < 1. Show that
14.3.10. () | {4 0 S(0,1) — S(0,1) be regular and w(a) = 0. Show that
(@) ()] < | £ (b) [w'(a)] <1 —af*.
14.3.11. (6) Let ai,as,... be a sequence of complex numbers such that

lax| <1 and Reay > 3 for all k. Let
20 =0, Zn+l = T —— -
Prove that a,, — 1.

(based on IMC 2011/6)

145012 (9 Let D = {# € C : |z|] < 1} be the complex unit disc and let

0 < a < 1 be a real number. Suppose that f : D — C is a holomorphic
function such that f(a) =1 and f(—a) = —1.

(a) Prove that

sup | f(z)| >
z€D

(b) Prove that if f has no root, then

1
a

2

1—-a
> .
fgg|f(Z)|eXp( " ﬂ)

(Schweitzer competition, 2012)

14.4 Caratheodory’s theorem

14.4.1. (10) Is there a Caratheodory type theorem for conformal bijections

between domains that are not simply connected and whose boundaries are a
union of finitely many Jordan curves?
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14.4.2. (9) Show that domains 71 < |z| < Ry and 7 < |z| < Ry are
Ry Ry

1 T2

biholomorphic if and only if

14.5 Schwarz reflection principle

14.5.1. (5) Let f be a holomorphic function on r < |z| < 1 which extends

continuously to the unit circle and satisfies (a) f(z) € R for |z] = 1 (b)
f#0,and |f(z)] =1 for |z| = 1. Prove that f has an analytic continuation
tor <|z[ < 1.
14.5.2. (5) Let f be holomorphic and non-vanishing on a convex domain D.
Assume that the boundary of D contains the real interval I and that f has
a continuous extension to the interior of I where it satisfies |f| = 1. Show
that f can be analytically continued to D = {Z: z € D}.
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Hints and final results

Calculate the truth table

Answer:

AV (B= A)

vV (B=A)

A
I
I
N
I

Z—Z2-w

ZzZ= >

Let H C R be a subset. Formalize the following statements and their
negations. Is there a set with the given property?

1. H has at most 3 elements.

2. H has no least element.

3. Between any two elements of H there is a third one in H.

4. For

Answer:

1.V
2.V
3.V
4. v

any real number there is a greater one in H.

z,y,z,weEH zrz=yVex=zVex=wVy=zVy=wVz=w
re€H 31 yeH y<«x

zy2yeEH xz<y3d zeH x<z<y

zeR 3 yeH z<y

183
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How many sets H C {1,2,...,n} do exist for which Vz ([(z € H) A
(x+1eH)|=2+2€ H)?

Hint: Add one to the beginning of the set! j(n+1) =j(n) +j(n—1)+1

1.0.14. ) 1t NOR(z,y) = —(z V y). Using only the NOR operation we can
create several expressions, e.g., NOR(z, NOR(NOR(z, y), NOR(z, x))).
(a) Show that we can generate all logic functions of n variables in this
way!
(b) Show another example of a logic function of 2-variable NOR, with this
generating property!

Vcc 4Y 4B 4A 3 3B 3A
14) |13 {12| |11 [|10] |9} |8

1112|311 4|l5(]|6]]7
1Y 1A 18 2y 2A 28 GND
A Texas Instruments SN7402N integrated circuit, with 4 independent NOR logic gates
Hint: It is sufficient to express the operations A, V and —.

xz Ay =NOR(NOR(z,z), NOR(y,y); zVy=NOR(NOR(z,y), NOR(z,y);
-z = NOR(z, z).

Another “universal” operation is NAND(z,y) = —(x Ay). (The integrated

circuit SN7400N contains four NAND gates.)

1.0.22.) prove the so-called binomial theorem:

(a+b)" = <g>a” + (T)a”—1b+-~-+ (Z)b"

Hint: Use exercise 1.0.21 and induction.

1.0.23. ) Which one is bigger? 639° or 638° + 9 - 63887
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Hint: Use the binomial theorem.

Lot A= {1,2,..n} and B = {1,.., k)

1. How many different functions f : A — B do exist?
2. How many different injective functions f : A — B do exist?

3. How many different functions f : Ag — B do exist, where Ag C A is

arbitrary?
Answer:
1. |B|Al = k.

2.y nl=k(k—-1)--(k—n+1).
3. (IBl+1D)Al = (k4 1)~
1.0.32.) 15 it true for all triples A, B, C of sets that

(a) (AAB)AC = AA(BAC);
(b) (AAB)NC = (ANC)A(BNC);
(¢) (AAB)UC = (AUC)A(BUC)?

Answer: (a) yes; (b) yes; (c) no.

1.0.44.) prove that tan 1° is irrational!

Hint: For which angle do we know that its tangent is irrational?

1.0.45. At least how many steps do you need to move the 64 stories high
Hanoi tower?

—

Towers of Hanoi
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Hint: Induction; l,,41 = 2, + 1.
<—Back

1.0.47.) For how many parts the space is divided by n planes if no 4 of them

have a common point and no 3 of them have a common line?

Hint: Use the result of exercise 1.0.46.

< Back

1.0.55. ) Pprove that the following identity holds for all positive integer n:

1 1
n<ld+—+...+4 — < 2¢n.
VRSl g v S

Hint: The trivial estimate gives the lower bound, the upper bound can be
obtained by induction.

+Back
b 4
1.0.68. ) et a,b > 0. For which z is the expression a —|—2x minimal?
x

Hint: Apply AM-GM.

«—Back

Show that no ordering can make the field of complex numbers into an
ordered field.

Hint: Show that 22 > 0 holds in every ordered field.

<Back

1.1.12. ) Does the ordered field of rational functions satisfy the Archimedean

axiom?

Hint: The function z/1 is greater than all positive integers.

<—Back

)

Given an ordered field R and a subfield Q show that if

(Va,b € R) ((1<a<b<2):>((Elqe(@)(a<q<b)

SN—

then R satisfies the Archimedean axiom.
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Hint: Suppose that some element L € R is greater than all positive integers.

Let a=1+ 5 andb=1+ 1.

1.1.14.) [y which ordered fields can the floor function be defined?

Answer: In Archimedean fields.

1.1.15. ) Does the ordered field of rational functions satisfy the Cantor axiom?

Hint: Let I,, = [n; %]

1.1.18. ) Which axioms of the reals are satisfied for the set of rational numbers
(with the usual operations and ordering)?

Answer: Only the Cantor axiom is not satisfied.

1.1.37. ) Does the ordered field of the rational functions satisfy the completeness
theorem: all non-empty set has a supremum?

Hint: Consider R as a subset of the field of the rational functions.

(_ Solution— ) (_«Back )

1.1.38.) Prove that if an ordered field satisfies the completeness theorem, then
the Archimedean axiom holds.

Hint: What is the supremum of the set of positive integers?

1.1.39. ) Prove that if an ordered field satisfies the completeness theorem, then
the Cantor axiom holds.

Hint: Suppose that [a1,b1] D [az,bs] D is a descending chain of closed inter-
vals. Show that sup{ai,as, ...} is contained by all of the intervals.
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1.1.40.) Define recursively the sequence x,, 11 = =, (xn + %) for any x;. Show
that there is exactly one x; for which 0 < z,, < 2,41 < 1 for any n.
(IMO 1985/6)

Hint: Let f1(z) = z and f,,41(z) = fn(x) (fn(:r) + %)
(a) For the uniqueness prove that if # < y and the sequences (f,(z)) and
(fn(y)) are increasing, then f,(y) — fn(z) > n(y — ).
(b) Let a, and b, be the real numbers for which f,+1(an) = fn(a,) and

fn(by) = 1. Apply Cantor’s axiom to the intervals [ay, by].

2.1.12.) Show that every convergent sequence has a minimum or a maximum.

Hint: Show that if the set A = {a, : n € N} has no maximum, then the

sequence a,, has a subsequence a,, — sup A.
+Back

2.1.43.) Prove that if (a, + by,) is convergent and (by) is divergent, then (a,)
is also divergent.

Hint: It is enough to show that if (¢,) is convergent and (d,,) is divergent,

then (¢, + d,) is also divergent.

2.1.51. Assume that a,, — a and a < a, for all n. Prove that a,, can be

rearranged to a monotone decreasing sequence.
Hint: Study the sequence b, := max{ay : k > n}.

2.2.11.) Determine the limit of the following recursively defined sequence!
a1 =0, apy1 = 1/(1+an) (n: 1,2,...).

Hint: See the 2.2.9 exercise.

Calculate the following:
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Hint: See the solution of 2.2.4.

2.4.19. ) 16t o > 0.
lim ¢/n + a” =7

Hint: See the solution of 2.4.6.

zizm) |

_sin1+sin2+ +sinn
Ty = 2 52 om

convergent?

Hint: Check the Cauchy criterion.

2.8.15.) Show that if |any1 — an| < 2=, then (ay) is convergent.

n2o

Hint: Use the idea of 2.7.2.

3.2.20. ) Assume that g(x) = tlim f(t) exists in every point. Prove that g(x) is
—T

continuous.

Hint: f continuous < image of convergent sequence is convergent + diag-

onal method.
Find the arclength of the curve 7(0) = a + acosf, (6 € [r/4,7/4]).

Hint: Use the formula of arclength in polar coordinates.

If v :[0,1] — R? is a continuous curve whose image contains [0, 1] x
[0, 1], can v be of bounded variation?

Hint: No. Consider a 1/n-grid on the unit square. For the partition corre-
sponding to the preimages of the vertices of the grid has variation > n?-1/n.

Prove that f : [0,1] — R is of bounded variation if and only if it is the
sum of two monotonic functions.
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Hint: The total variation function minus f is monotone.

Let f be continuous, g(z) =

o o

/abfdg:?

Hint: f(“E2)(d - ¢).

Is the following integral convergent?

3
t
/ cos a
o t

2

s4. cost 1/2 . cost 1-7
Hint: <= > = Or: < . > —
1, cost = v leads to a proper integral.

6.0.31. Convergent or divergent?

oo

1
Z nlogn

n=2

Hint: Use the 6.0.30 condensation lemma.

6.0.32. ) Lete>0. Convergent or divergent?

o0

n=2

Hint: Use the 6.0.30 condensation lemma.

ifx<“7+b
if;v>“T+b.

if g = 22

1
Z n(logn)l+e

2 Or: Integration by parts 1/t =



1

Ne}

1

8.1.31.) Jim g o (a2 + ¢2)¥" =7

Answer: 1

<Back

10.2.3.) For what functions f : R? = R will the following statement be true?
If g is a simple, closed rectifiable curve in R2?, then

/gw2y3 dy = /gf(x,y) dz.
1

Answer: f(z,y) = —izy* + ¢(z) with some differentiable function ¢(z).
+Back

10.3.11.) 15 g = R3\ {(cost,sint,e!) : t € R} simply connected?

Answer: Yes.

<—Back

11.1.2. ) What is the smallest possible cardinality of an infinite o-ring?

Answer: Continuum.

+Back
11.6.3. ) Trye or false? If f is absolutely continuous and strictly increasing on
[a, b], then its inverse is also absolutely continuous.

Answer: No.
< Back

(06

Hint: Expand (1 + z)" by the binomial theorem.

<Back

12.0.2. ) et a,b,c € C. What is the geometric interpretation of

%Im ((c—a)-m)?
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Answer: The signed area of the triangle (a, b, c).

12.0.4.) What are the product, the sum and the sum of squares of the complex
mth roots of unity?

Hint: Use the fact that these are exactly the roots of =™ — 1.

Let w(z) = % (2 + 1) be the so-called Zhukowksy map. What is the
image of
(a) the unit circle?
(b) the interior of the unit circle?
(c) the exterior of the unit circle?
(d) the circles with center 07
(e) the lines passing through 07
Answer: (a): The line segment [—1,1].
(b) and (c): The complement of [—1,1].
(d): Ellipses with foci —1, 1. (The unit circle is mapped to the line segment
[=1,1].)
(e): Hyperbolas with foci —1,1. (The image of the real axis is the union
of the rays (—oo, —1] and [1, 00); the imaginary axis is mapped onto itself.)

Let a,b € C and |b| < 1. Prove that

2
la — b]?
d =
‘ Z| 1_|b|2

1
21 J|z1=1

z—a
z—0b

+ 1.

Hint: Transform it to a contour integral, then apply Cauchy’s formula.
( Solution— ) ( +Back )

13.1.9. The function f(z) is holomorphic in the interior of the unit disc
(lz] < 1) and |f| < 1. How large can |f"’(0)| be?

Answer: 6.
13.3.1.)  An entire function f(z) satisfies |f(1/n)| = 1/n2 for n =1,2,..., and
|f(4)| = 2. What are the possible values of |f(—%)|?

Hint: Apply the Unicity Theorem to g(z) = f(z) - f(Z).
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(_Solution— ) (_+Back )

13.3.2. ) Show that if f takes only real values on the real and imaginary axes,
then f is even.

Hint: Consider the entire functions f(z) and f(—%).
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Solutions

1.0.12. Prove that the implication is left distributive with respect to the
disjunction.

Solution: We have to prove
(A:(BvC’)) = (A= B)V(A=0).

By the basic properties of the V operation (idempotency, commutativity,
associativity) and the identity (X = Y) = -X VY,

(A:>(B\/C)> = —AV(BVCO) = (~AV-4)V (BVC)

=(-AVB)V(mAVC)=(A=B)Vv(A=(C).

Prove that

(D60 (3)-

Solution: Induction: The statement is true for n = 1, and

1
= (= gy o

assuming that the statement is true for a,,, we get

1 1 n+1 n+2
Api1 = — = .
1 n+12) 2n  2n+2

195
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1.0.49. ) Pprove that the following identity holds for all positive integer n:
1l ! _n
3735 T (@2n—-1)-(2n+1) 2n+1
Solution: Induction on n. For n = 1 we have ﬁ \/ Suppose now that
the identity holds for n, then for n + 1 we have
1 1 1 1
LHS =—+—+...
B33 T T e sy T D@13
n 1
= by the ind. hyp.
2n+1+(2n+1)-(2n+3) Y UHe e P
n2n+3)+1  2*+3n+1  n+l

2n+1)-(2n+3) (©2n+1)-(2n+3) 2n+1)+1’

since 2n? +5n+ 1= (2n+ 1)(n + 1).

= % (71 - ﬁ), we get a telescopic

. . . 1
Solution 2: Since m m—1

sum, therefore

1 1 1 1 1 1
2-LHS ==-—-<- - — = —
(1 3>+<3 5>+ +<2n—1 2n+1>
_ 1 2n
m+1 2n+1’
1.0.51. ) Prove that the following identity holds for all positive integer n:
n-(n+1) 2

et (220D)

Solution: Induction on n. For n = 1 both sides equal to 1. If the statement
holds for n, then for n 4+ 1 we have

Pt 40’ +(n+1)7°= <n.(n2+1))2—|—(n—|—1)3:
=(n+1) (Tf+n+1> =(n+1)2(nz2)2 _ ((”+1)4(n+2))2

Solution 2.
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]

The sum of the numbers in the n-th
square is (3 7)2, the sum of the numbers
connected with curves is n2, and we have
n—1 on one level and we also have n? in

the lower right corner.

1.0.56. ) Show that for all positive integer n > 6 a square can be divided into
n squares.

JOXOX
000

0006
900 0

Solution: Dividing a square into for ones of half the side we see that if a
square can be divided into n squares, then it can also be divided into n + 3
squares. On the other hand we have the solutions for 1,6 and 8:

[ ] [ ]

1 6 8 2k+2,2k+5

(The right-most picture shows another possible construction.)

1.0.66. ) Pprove that if a,b,c > 0, then the following inequality holds

a? v 2
4+ >
be + ac+ ab —

Solution: Apply the AM-GM inequality to the terms on the left-hand side:

2 b2 2
T R L N Y
3 bc ac ab

1.0.74.) Which rectangular box has the greatest volume among the ones with
given surface area?

Solution: A = 2(ab+ ac+ bc) = 6ob+tactbe S 6 Va2 = 6V2/3, Equality
can occur only for ab = ac = be, i.e. for the case of the cube.
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1.0.77. ) Calculate the maximum value of the function z2 - (1 —z) for z € [0, 1]

Solution: By the AM-GM inequality,

AM-GM 229
Vr-ox-(2-22) < :c—l—:c—l—g( 2)

with given volume V is the cylinder whose height equals the diameter of its
base.

2
Vor2.rh-rh = \3/2v—2.
s

1.0.78 Prove that the cylinder with the least surface area among the ones

) A 2r? 4+ rh+rh AM-GM
Solution: — = —— ——
3 3

1 n
1.0.79.) Pprove that n! < (n i )

AM- GM ntl
Solution: V/n! ( ~2 7 ) for n > 1.
n
1.0.83.) Pprove that for any sequence ai, as, ..., a, of positive real numbers
1 2 3 n
-+ T+ I +..+
o wmta wtwmta ar Tz T

An

T T < 2(a1+a2+. . .—|—an)

(KoMaL N. 189., November 1998)
Solution: Applying the weighted AM-HM inequality,

>

Z 1+24+...4+k
2 k. —
Satmtota k“ ot o Tt e
Z loar+2-2a2+...+k-kap
- k+1 1+2+...+k

n 4 k ) n n 4 n 22k +1)
:kzzlk(k+1)2;ﬁai:;ﬁai;k k1 2 z; 2kt 1)2
o =2 2 "‘ 2 2
Zzai;(l@(k+l)2)<;zz (2 (n+1)2><
<ii2ai-z
=1

n

- :25 a;.

12 : ¢
=1

n

i=1
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Remark: The constant 2 on the right-hand side is sharp. If a; = % and n is
sufficiently large, the ratio between the two sides can be arbitrarily close to

1.

Using the field axioms prove the following statement: (—a)(—b) = ab.

Solution: a + (—1)-a=1-a+ (—=1)-a= (14 (—1)) - a = 0, because of the
definition of 1 and —1 and distributivity. Therefore the uniqueness of the
additive inverse implies (1) -a = —a. = (—a)(=b) = ((—1)-a)((—1) - b),
which further equals ((—1) - (—1))ab because associativity of multiplication
and commutativity. Finally it is easy to see that (—1)-(—1) = 1.

1.1.37. ) Does the ordered field of the rational functions satisfy the completeness
theorem: all non-empty set has a supremum?

Solution: No.

Denote by R(z) the ordered field of the rational functions. Mapping the
real numbers to the constant functions, R can be considered as an ordered
subfield of R(z). We show that R is non-empty, bounded from above but it
has no smallest upper bound.

R is obviously non-empty. The function z = % € R(x) is an upper bound

T —a

of R because for any a € R we have x —a = > 0. Hence, R is a

non-empty subset of R(x) and it is bounded from above.
Now we show that R has no smallest upper bound. If K € R(z) is an
upper bound, then K — 1 is also an upper bound since for every a € R we

havea+1eR=a+1< K=a<K.

1.1.42.) prove that I+2)" <l+4+rzifreQ,0<r<1landz>-1.

AM-GM

Solution: r =p/q, ¢/(1+x)P 197 < W_

2.1.18. Is it true that if z,, is convergent, y, is divergent, then xz,y, is
divergent?

Solution: No, for example z,, = # and y, = n.

2.1.27.) g there a sequence of irrational numbers converging to (a) 1, (b) v/2?

Solution: (a) 1+ % (b) (14 1) v2.
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2.1.30. Does a2 — a? imply that a,, — a? And does a3 — a® imply that
a, — a?

Solution: (—1)" 4 1. But for a = 0 we have d,, (¢) := 8,43 (¢*) if a > 0,
lay, —a®| laj, —a®|
a2 +aan+a? = 3(a/2)?

then |a, —a| = for n big enough.

2.1.47.) Tet a; # 0 and p(z) = ag + a1 + . .. + apa®. Prove that

1
lim Ln—'— )

=1.
n—-+oo p(n)

Solution: Simplify by agn”:

p(n+1) (1 + %)k +a(n)

p(n) — 1+b(n)

where a(n) — 0 and b(n) — 0.

2.1.54.) Pprove that if the sequence (a,) has no convergent subsequence, then

|an| — oo.

Solution: If the sequence |a, | 4 oo, then it has a bounded subsequence. By
the Bolzano—Weierstrass theorem this subsequence has a convergent subse-

quence.
Prove that n"*1 > (n +1)" if n > 2.

Solution: Consider the inequality between the arithmetic and geometric
n—1

—
means for the numbers n+1,... ,n+1,vV/n+1,v/n+ 1.

Prove that

V2 V48 Vo <t 1.
Solution: a, = 2, where b, = % + % 4+ -+ 4+ 2%, It is easy to check by

271,
induction that 2 — b,, = %2 therefore a,, < 4.

2n
Prove that 2" > n* holds for all sufficiently (depending on k) large n.
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Solution' 2" > (kil) ifn>k+1. (k+1) > (k+1)' (n/2)FLif n > 2(k + 1).
(k+1)' (n/2)k*+1 > nk if n > 281k +1)!. This estimate is not sharp: >
k. E.g. for k = 10 it holds from n = 60.

log n

2.2.10. — — 1
Prove that for the sequence a; =1, a,11 = a, + — we have ajgoo1 >
100 (see the 2.2.9 exercise and its solution.)

Solution: a, is monotone icreasing. Assume that a,24; <n = ai > % Vi <
£

21 o,
v
«—Back

Find a non-convergent sequence with exactly one limit point.

n= G241 > 01 +Nn"

Solution: Merge the sequences 1/n and n.

Find a sequence such that the set of limit points of it is [0, 1].

Solution: List the elements of a countable dense subset of [0,1]. (E.g. [0,1]N

Q)
Calculate lim,, o V2" — n.
Solution:

1
9 — n/2n > Yon _ n> n/zn —_9on—1 -9 ’\L/g7

for n big enough. The RHS tends to 2 by 2.4.5, so the sandwich theorem

implies the result.
-2.4. 17.

Solution:

1 1 ViZ—1-n 1=+l
n(vn2—1-n) n(vn?2—-1—-n)vn?-1-n -1 ,

. 1 _
therefore lim YoV s 2.
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.
v/ n? + cosn

convergent?

Solution: 1 < ¥/n? + cosn < V/n? = (¢/n)° — 13 = 1.

2
2.5.19.) Tet ay =1, Upt1 = Gp + —5.
a

which a,, > 10. "

Solution: Suppose that Vn a,, < 10. = a2 < 100 =

Upy1 = Gy + % > a, + %. by induction we get

14+n

2
an+1>a1—|—n-m— 'm7

consequently for e.g.

n = 500 asg; > 1+ 500 - 11

)

100

which contradicts to our assumption.

Prove that

1 n+1 1 n+2
1+ — > (1+ :
n n+1

in other words the sequence a,,

<

Prove the existence of an n € N, for

2
-5 >
a%z

(1 + %)nﬂ is strictly monotone decreasing.

ag (1) (#_1) +1

Solution: equivalently

n n+1
()
n+1
2.6.10. ) (alculate the limit of the sequence

()
a, = .
n+1

1 1 n+1
an |14+ —— 1+ — e,
n+1 n+1

Solution:

therefore a,, — e.

n+2
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(+Back )

The sequence a,, is monotone and it has a convergent subsequence.
Does it imply that a,, is convergent?

Solution: Yes, since we have an a,, — a convergent subsequence and be-

cause of the monotonicity ¥ n > ny |a, — a| < |an, — al, therefore a,, — a.
(Back )
Prove that

=1
Zﬁ<2’
n=1

=1 (telescopic sum).

! 1 oo 1
Solution: -5 < =T and ), oD
(_«Back

Find a sequence a,, such that > a, is convergent, and a,+1/a, is not
bounded.

Solution: For example as,, = n% and agn4+1 = %
«—Back

Show that the following functions are injective on the given set H,

and calculate the inverse.

L f(@) = 5 H=[-L1] 2ﬂ@=m%?H=R

Solution: f~'(y) = 7, y € (-1,1).
(+Back ]
Are the following functions injective on [—1,1]?
2

W) f@)= 5= D)= 5.

Solution: a) Let x # y and suppose that f(z) = f(y), i.e.,
x Yy

2+1 241
since © — y # 0. On the other hand |z|,|y| < 1, which can be satisfied only
for x = y = £1 but equality was not allowed. Therefore f(z) is injective on
[-1,1].

b) g(1) = g(—1), therefore g(z) is not injective on [—1, 1].
(+Back )

- x(y2+1) = y(z2+1) = z—y = (z—y)zy = 1 =2y,
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(Brouwer fixed-point theorem; 1-dimensional case.) All f : [a,b] —

[a,b] continuous functions have a fixed point, i.e., an z, for which f(z) = z.

Solution: Apply the Bolzano-Darboux theorem to f(z) — x.

Prove that the polynomial 2% — 322 — = + 2 has 3 real roots.
Solution: f(—1) = —1, f(0) = 2, f(2) = —4, f(4) = 14. By the Bolzano—

Darboux theorem there are at least 3 real roots.

Leta; <as <...<a,and by < by <...<b, bereal numbers. Show

that
ea1b1 ealbz . elllbn
e@2b1  pazby  pasb,
det . . ) . > 0.
eanbl eanb2 . eanbn

(KéMaL A. 463., October 2008)

Solution: Apply induction on n. For n = 1 the statement is e*'®* > 0 which
is obvious. Now suppose n > 1 and assume that the statement is true for all
smaller values.

Let ¢; = a; — ay > 0. Then

ealbl ea1b2 . ealbn
ed2bi  pazbz e2bn
det
eanbl  panbz eanbn
e®1b1 ea1b2 . e@1bn
ea1 b1 602171 €a1b2 eC2b2 L ealbneCan
= det . . . . =
e@bigenby  paibagenba pa1bngcnbn
1 1 - 1
eC2br  peab2 o pcabn
— e (bitb2t+bn) ot ,
efnbi  genb2 o enbn

so it is sufficient to prove that the last determinant is positive.
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To eliminate the first row, subtract the (n — 1)th column from the nth
column. Then subtract the (n — 2)th column from the (n — 1)th column, and
so on, finally subtract the first column from the second column. Then

€
det

ecn by

1 0

eC2br  peaba _ peab1

= det
ecnbl ecnb2 _ ecnbl
eC2ba _ peaby
eCsb2 _ oc3br
= det

eCnb2 _ ccnbr

Consider the function

eCQt
8(33t
f(t) =det
ecnt
Then
eC2b2 _ pc2bi pcabs
eCsb2 _ ccabr pesbs o
det

enba _ penbi  penbs _

caby

eC2bs _ oc2ba

ecsbl  pe3ba _ peabi pesbs o oc3ba

eCnb3 _ oCnb2

n _ efn

1

caby,

ecn by

0

eC2bn _ oC2bn_1

eC3bn _ oc3bn—1

ecn bn _ ecn brn—1

eC2bn _ oC2bn1

eC3bn _ oc3bn_1

eCnbn _ oCnbn_1

eC2bn _ oC2bn—1

eC3bn _ oC3bn_1

eCnbn _ oCnbn-1

eC2bn _ oC2bn1

— eCSbn—l

= f(b2) = f(b1)-

bn—1

By Lagrange’s mean value theorem, there exists a by < z; < by such that

f(b2) = f(b1) = (ba — b1) f'(21), Le.,

eCeb2 _ pe2bn
eCsb2 _ pcaby
det

ecn by _ ecn b1

eC3bs _ pcaba

eC2bn _ oc2bn_1
eC3bn _ oC3bn—1

ecn bn _ ecn bn—1
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coef2?1 eC2bs _ pe2ba peabn _ peabna

c5e0871 eC3bs _ ocaba eC3bn _ oC3bn—1
= (bQ — bl) det

Cpein® efnbs _ onba  plnbn _ pCnbn1

Repeating the same argument for each column, it can be obtained that
there exist real numbers x; € (b;,b;+1) (1 <i <n —1) such that

eC2b2 _ pc2b1 eC2bs _ oc2b2 eC2bn _ oC2bn—1
eC3bz _ peabi gesbs _ pesba 0 oesbn _ pes3bna
det =
efnb2 _ cnbi  oenbs _ ocnba eCnbn _ cCnbn—1
1 €Tl cgef2T2 | pe®2¥n-1
= [ (bis1 — b:) - det : : : =
=1 Cnen®l  cpefr®z . ¢, efnTn—1
Cc2T1 CcoT2 C2Tpn—1
" e e ... e
= H i1 — Di) H ¢; - det :
1=1 ecnzl 6cn,x2 . ecnxnfl

By the induction hypothesis, this is positive.

4.5.15. ) 1t p(r) = 2" +a,_ 12" 1+ ...+ a1x + ap be a polynomial with real

coefficients and n > 2, and suppose that the polynomial (z — 1)**! divides
p(x) with some positive integer k. Prove that

n—1 2

2k
> lael > 14 =—.
n

£=0
CIIM 4, Guanajuato, Mexico, 2012
Solution: For convenience, define the leading coefficient a,, = 1 also.

Lemma 1. For every polynomial q(y) with degree at most k, we have

S arq(t) = 0.

£=0

Proof. Let ¢o(y) =1 and let o, (y) =y(ly—1)...(y—v+1)forv=1,2,....
By (z — 1)*|p(z), for 0 < v < k we have

ZGZSDV f(u)< )
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The polynomials ¢g(y), - . -, ¢k (y) form a basis of the vector space of polyno-

k
mials with degree at most k, so q(y) = > ¢, (y) with some real numbers
v=0

co,...,ck. Then
n n k k n
Zaé q(Z) = Zaz (Z Cy @V(g)) = ZCV (Z Gy @u<£)> =0. O
£=0 =0 v=0 v=0 =0

O

To prove the problem statement, let T} be the kth Chebyshev polynomial,
and choose

= cosh (k-log (Z"’} + (%)2 — 1))

2 1+
= cosh <k-10g W) = cosh <k~10g ] ‘/f) > cosh%.
n

— 1 1
q(n) =Ty <n > = cosh (k .cosh™?! n—}—) _
n—1 n—1

Jn

v

(In the last step we applied the inequality log if—; > 2x.)
By applying the lemma,

S . 2% 2k
Z lae| > Zae( — q(Z)) =gq(n) >cosh— >1+ —.
=0 =0 vn n

6.0.30. ) Prove the Condensation lemma: Let a; > ag > -+ > ap > --- > 0.
Then

oo oo
E an convergent <= E 2ka2k convergent.
n=1 k=1

Solution:

a1+ as+ as+ ag+ ag+ ag+ ag+ asg+
a1+ as+ as+ ag+ asz+ ag+ ar+ as+
%al—i— a2+ ag4+ ag4+ ag+ ag+ ag+ as+

AV
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11.1.6. ) Pprove that if f:R — R, then the set of points of continuity is Borel,
and give as small as possible of Borel class (e.g. Gss505060), to which it still
belongs.

Solution: For every positive integer n let
I, = {I C R : I is an open interval and sup f — iI}ff < %}
I

and let
A, =UL, = U I.
I€T,

By Cauchy’s criterion, any a € R is a point of continuity of f if and only if
vneN Il e, acl,

or equivalently
VneN a€A,.

Therefore, the set of points of continuity is [ A, that is in Gs.

neN

12.0.9.) et n > 2 and uy = 1,uo,...,u, be complex numbers with absolute
value at most 1, and let

fR)=GE—-u)(z—u2)...(z — up).

Show that the polynomial f’(z) has a root with non-negative real part.

KoMaL A. 430.
Solution: If 1 is a multiple root of f, then f’(1) = 0 and the statement
becomes trivial. So we assume that us, ..., u, # 1.
Let the roots of f’(z) be vi,vs...,v,-1, and consider the polynomial
g(2)=f(l—2)=a1z+ a2’ + ... + apz".
The non-zero roots of g(z) are 1 —ua,...,1—u,. From the Viéta formulas
we obtain
Xn: 1 :(17’1,62)...(17Un_1)+...+(17U3)...(17Un):_ai
k:21—uk (I—ug)...(1—up) ay
The roots of the polynomial f/'(1—2) = —¢'(z) = —a; —2a2z—...—na,z""!
are 1 —vy,...,1 —v,_1; from the Viéta formulas again,
nil 1 _(1—Ul)...(l—vn,g)—&—...—i—(l—vg...vn,l)__@
1— vy (I—v1)... (1 —vp_1) a;

{=1
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Combining the two equations,

g:ll_ve k:21—uk'

For every k, the number uy, lies in the unit disc (or on its boundary), and
1 — wuy, lies in the circle with center 1 and unit radius (or on its boundary).

The operation of taking reciprocals can be considered as the combination of
an inversion from pole 0 and mirroring over the real axis. Hence ﬁ lies in
the half plane Re z > %, ie. Rel_luk > %

Summing up these inequalities,

Re— b > 1 SR 1 2 >R LI
max e e = e
1<<n—1 1—1)5_71—1#1 1—wvy n—lk 1—upr —

so at least one 1_1W lies in the half plane Re z > 1.

Repeating the same geometric steps backwards,

1

R
el—vz

—

DN | =

1 1 1
>1 — (l—w)—§§ ve—§ §§:>Rew20.

Uk

18.1.7.) TLet a,b e C and |b| < 1. Prove that

ja — b

2
zZ—a |
Z| =

1— b2

z—0b

1

271 J)z1=1

+1
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Solution:

_ (z —a)(l —az) (z—a)(1 —az) _
b(1 — b2) L b(1 —bz) o
_ (b—a)(1 —ab) gi(afg)(ﬁfb) _a—1b?
(1 —bb) T T iw 1_1—\bl2+1'

13.3.1.)  An entire function f(z) satisfies | f(1/n)| = 1/n2 for n = 1,2,..., and
|f(7)| = 2. What are the possible values of |f(—14)|?

Solution: Let g(z) = f(z) - f(Z), which also is an entire function. At the
points of the form 1/n we have g(1/n) = f(1/n) - f(1/n) = |f(1/n)|?> =
(1/n)*. Hence, by the Unicity Theorem, g(z) = z*. Then 1 = |i*| = |g(i)| =
[F@)] - 1f (=) = 2f(=d)l, so | f(=i)] = 3

Remark: The property |g(1/n)| = 1/n? is satisfied by the functions of the
form f(z) = 2%e**(*) where ¢ is an entire function whose values are real

along the real axis.

13.3.3.)  Give an example of a function that is holomorphic in the open unit
disc and has infinitely many roots there.

Solution: For instance, such a function is sin i with zeros 1 — ﬁ

14.3.12.) et D= {z € C: |z| < 1} be the complex unit disc and let 0 < a < 1
be a real number. Suppose that f : D — C is a holomorphic function such
that f(a) =1 and f(—a) = —1.

(a) Prove that

— a2
).

(Schweitzer competition, 2012)

1
> Z
up el > g

(b) Prove that if f has no root, then

1
sup |f(z)| > exp <
zeD
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f(z) = f(=2)
2z

is a holomorphic function too, satisfying g(a) = % =1 Fora<r<l,

by the triangle inequality and the maximum principle we have

fEI+ (=2

Solution: (a) Let g(z) = for z # 0 and let g(0) = f’(0). This

sup | f(2)| > max|f(z)| > r - max
zeD |z|=r

|z|=r 2r -
r
> r-max|g(z)| > r-|g(a)] = ~.
z|=r a

From r — 1 — 0 the statement follows.
(b) Let M = sup |f(z)|. Since f is not constant, |f| < M everywhere in
z€D

D. In particular, from f(a) =1 we can see that M > 1.

The function f is non-zero on the simply connected set D, so it has a
logarithm; there exists a holomorphic function g(z) : D — C such that
f(z) = expg(z). Without loss of generality we can assume that g(a) = 0.
From f(—a) = —1 we get g(—a) = kmi with some odd integer k, and from
|f| < M we get Reg < log M. Denote by H the half-plane Re z < log M.
Hence g is a D — H function.

Define the linear fractional transformations

zZ+a 1 zZ—a
:D D = =
¢:D =D, ¢(z) T ¥ (=) =1
and .
:H — D =
v =D, ¥() 2log M — 2

Consider the D — D function h = ¢ o go . Since ¢(0) = a, g(a) = 0 and
¥(0) = 0, we have h(0) = 0. Schwarz’s lemma, applied to h and the point

7l (—a) = 72 gives us [h(524)| < 122, 50
2a kmi 1
> [h(p~ (—a))| = —a))| = =
1+02 —‘ (SD ( a))‘ W(g( a))l IQIOngﬂ'Z 210gM 2 1
(Fr) "+
2\ 2 _ 42 2
log v > BT J(LEaRNTy _kw 1oan 1o
2 2a 2 2a 4a

Remark: The estimates in the problem statement are sharp. For example, we

. z . . iz—a® 7
have equality for f(z) = = in part (a), and for f(z) = —iexp | — 1%
a iz a

in part (b).
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