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Preface

This collection contains a selection from the body of exercises that have been
used in problem session classes at ELTE TTK in the past few decades. These
classes include the current analysis courses in the Mathematics BSc programs
as well as previous offerings of Analysis I-IV and Complex Functions.

We recommend these exercises for the participants and teachers of the
Mathematician, Applied Mathematician programs and for the more experi-
enced participants of the Teacher of Mathematics program.

All exercises are labelled by a number referring to its difficulty. This
number roughly means the possible position of the problem in an exam. For
the Teacher program the range is 1-7, for the Applied Mathematician program
2-8, and for the Mathematician program 3-9. (Usually the students need
to solve five problems correctly for maximum grade; the sixth and seventh
problems are to challenge the best students.) Problems with difficulty 10
are not expected to appear on an exam, they are recommended for students
aspiring to become researchers.

For many exercises we are not aware of the exact origin. They are passed
on by “word of mouth” from teacher to teacher, or many times from the
teacher of the teacher to the teacher. Many exercises may have been created
several generations before.

However one of the sources can be identified, it is “the mimeo”, a widely
circulated set of problems duplicated by a mimeograph in the 70’s. The
problems within “the mimeo” were mainly collected or created by Miklós
Laczkovich, László Lempert and Lajos Pósa.

Let us give only a (most likely not complete) list of our colleagues who
were recently giving lectures or leading problem sessions at the Department
of Analysis in Real and Complex Analysis:

Mátyás Bognár, Zoltán Buczolich, Ákos Császár, Márton Elekes, Margit
Gémes, Gábor Halász, Tamás Keleti, Miklós Laczkovich, György Petruska,
Szilárd Révész, Richárd Rimányi, István Sigray, Miklós Simonovics, Zoltán
Szentmiklóssy, Róbert Szőke, András Szűcs, Vera T. Sós.
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Some problems from the textbook Anaĺızis I. of Miklós Laczkovich and
Vera T. Sós are reproduced in this volume with their kind permission. We
are grateful for their generosity.

We thank everyone whose help was invaluable in creating this volume,
the above mentioned professors and all the students who participated in
these classes. As usual when typesetting the problems we may have added
some errors of mathematical or typographical nature; for which we take sole
responsibility.
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Problems
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Chapter 1

Basic notions. Axioms of

the real numbers

1.0.1 Fundaments of Logic

1.0.1. (1)
Calculate the truth table

A ∨ (B =⇒ A)

Answer→
1.0.2. (3)

Calculate the truth tables.
1. A⇒ B 2. A⇒ B 3. A⇒ (B ⇒ C)

1.0.3. (2)
Let P (x) mean ,,x is even” and let H(x) mean ,,x is divisible by

six”. What is the meaning of the following formulas and are they true? (¬
denotes the negation.)

1. P (4) ∧H(12)

2. ∀x
(
P (x)⇒ H(x)

)

3. ∃x
(
H(x)⇒ ¬P (x)

)

4. ∃x
(
P (x) ∧H(x)

)

5. ∃x
(
P (x) ∧H(x+ 1)

)

6. ∀x
(
H(x)⇒ P (x)

)

7. ∀x
(
¬H(x)⇒ ¬P (x)

)

13



14 1. Basic notions. Axioms of the real numbers

1.0.4. (3)
Let H ⊆ R be a subset. Formalize the following statements and

their negations. Is there a set with the given property?

1. H has at most 3 elements.

2. H has no least element.

3. Between any two elements of H there is a third one in H.

4. For any real number there is a greater one in H.

Answer→

1.0.5. (2)
Formalize the statements: ‘There is no greatest natural number’

and ‘There is a greatest natural number’ (logical signs, = and < can be
used).

1.0.6. (5)
What is the meaning of the following statements if H ⊂ N?

(a) (1 ∈ H) ∧ (∀x ∈ H (x+ 1) ∈ H);
(b) (1 ∈ H) ∧ (2 ∈ H) ∧ (∀x ∈ N (x ∈ H ∧ (x+ 1) ∈ H)⇒ (x+ 2) ∈ H);
(c) (1 ∈ H) ∧ ((∀x ∈ N (∀y ∈ N y < x⇒ y ∈ H))⇒ x ∈ H);
(d) ∀x ∈ N (x 6∈ H)⇒ (∃y ∈ N (y < x ∧ y 6∈ H);

1.0.7. (7)
How many sets H ⊂ {1, 2, . . . , n} do exist for which ∀x (x ∈

H =⇒ x+ 1 /∈ H)?

1.0.8. (7)
How many sets H ⊂ {1, 2, . . . , n} do exist for which ∀x ([(x ∈

H) ∧ (x+ 1 ∈ H)]⇒ x+2 ∈ H)?

Hint→

1.0.9. (5)
Which statement does imply which one?

1. (∀x ∈ H)(∃y ∈ H)(x+ y ∈ A ∧ x− y ∈ A);

2. (∃x ∈ H)(∀y ∈ H)(x+ y ∈ A ∧ x− y ∈ A);

3. (∀x ∈ H)(∃y ∈ H)(x+ y ∈ A).

1.0.10. (4)
What is the meaning of the following formulas if H is a set of

numbers?
(a) ∀x ∈ R ∃y ∈ H x < y; (b) ∀x ∈ H ∃y ∈ R x < y; (c)

∀x ∈ H ∃y ∈ H x < y.
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1.0.11. (5)
Let A and B two sets of numbers, which statement implies which

one?
(a) ∀x ∈ A ∃y ∈ B x < y (c) ∀x ∈ A ∀y ∈ B x < y
(b) ∃y ∈ B ∀x ∈ A x < y (d) ∃x ∈ A ∃y ∈ B x < y

1.0.12. (5)
Prove that the implication is left distributive with respect to the

disjunction.

Solution→
Related problem: 1.0.13

1.0.13. (5)
(a) Is it true that the implication is right distributive with respect

to the conjunction?
(b) Is it true that the implication is left distributive with respect to the

conjunction?
Related problem: 1.0.12

1.0.14. (4)
Let NOR(x, y) = ¬(x ∨ y). Using only the NOR operation we

can create several expressions, e.g., NOR(x,NOR(NOR(x, y),NOR(z, x))).
(a) Show that we can generate all logic functions of n variables in this

way!
(b) Show another example of a logic function of 2-variable NOR with this

generating property!

A Texas Instruments SN7402N integrated circuit, with 4 independent NOR logic gates

Hint→

1.0.15. (6)
Show that any Boolean function f(x1, x2, . . . , xn) of n variables

(i.e. a function assigning a true/false value to n true/false values) can be
expressed by using only variable names, brackets, the constant false value
and the implication operation (⇒).

1.0.16. (8)
Show that a Boolean function f(x1, x2, . . . , xn) of n variables (i.e.

a function assigning a true/false value to n true/false values) can be expressed
by using only variable names, brackets and the implication operation (⇒) if



16 1. Basic notions. Axioms of the real numbers

and only if

∃k ∈ {1, 2, . . . , n}
(

∀x1, . . . , xn
(
xk ⇒ f(x1, x2, . . . , xn)

))

.

1.0.2 Sets, Functions, Combinatorics

1.0.17. (2)
Solve: |2x− 1| < |x2 − 4|.

1.0.18. (3)
Find the parallelogram with greatest area with given perimeter.

1.0.19. (2)
What are the solutions of the following equation?

(
x+ |x|

2

)2

+

(
x− |x|

2

)2

= x2

1.0.20. (1)

1. How many words of length k can be created using the letters A, B, C,
D, E, F, G?

2. How many such word of length 7 can be created without repeating a
letter?

3. How many such word of length 7 can be created with the property that
A and B are neighbors (no repetition)?

1.0.21. (2)
Show that

(
n

k

)

+

(
n

k + 1

)

=

(
n+ 1

k + 1

)

.

1.0.22. (4)
Prove the so-called binomial theorem:

(a+ b)n =

(
n

0

)

an +

(
n

1

)

an−1b+ · · ·+
(
n

n

)

bn.

Hint→
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1.0.23. (3)
Which one is bigger? 6399 or 6389 + 9 · 6388?

Hint→

1.0.24. (3)
Prove the De Morgan identities, i.e., A ∪B = A∩B, and A ∩B =

A ∪B.
1.0.25. (3)

Prove that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

1.0.26. (2)
Let A = {1, 2, ..., n} and B = {1, ..., k}.

1. How many different functions f : A→ B do exist?

2. How many different injective functions f : A→ B do exist?

3. How many different functions f : A0 → B do exist, where A0 ⊂ A is
arbitrary?

Answer→

1.0.27. (4)
Prove that x ∈ A1∆A2∆ · · ·∆An if and only if x is an element

of an odd number of Ai’s.

1.0.28. (3)
Let A∆B = (A \ B) ∪ (B \ A) denote the symmetric difference

of the sets A and B. Show that for any sets A,B,C:
1. A∆∅ = A, 2. A∆A = ∅, 3. (A∆B)∆C = A∆(B∆C).

1.0.29. (2)
How many lines are determined by n points in the plane? And

how many planes are determined by n points in the space?

1.0.30. (3)
How many ways can one put on the chessboard:

1. 2 white rooks,

2. 2 white rooks such that they cannot capture each other,

3. 1 white rook and 1 black rook,

4. 1 white rook and 1 black rook such that they cannot capture each other?

1.0.31. (4)
How many different rectangles can be seen on the chessboard?
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1.0.32. (3)
Is it true for all triples A,B,C of sets that

(a) (A△B)△C = A△(B△C);
(b) (A△B) ∩ C = (A ∩ C)△(B ∩ C);
(c) (A△B) ∪ C = (A ∪ C)△(B ∪ C)?

Answer→
1.0.33. (4)

Is it true that the subsets of a set H form a ring with identity
using the symmetric difference and a) the intersection b) the union?

1.0.34. (4)
Let f : A → B. For any set X ⊂ A let f(X) = {f(x) : x ∈

X} (the image of the set X), and for any set Y ⊂ B let f−1(Y ) = {x ∈
A : f(x) ∈ Y } (the preimage of the set Y ). Is it true that

(a) ∀X,Y ∈ P(A) f(X) ∪ f(Y ) = f(X ∪ Y ) ?
(b) ∀X,Y ∈ P(B) f−1(X) ∪ f−1(Y ) = f−1(X ∪ Y ) ?

1.0.35. (4)
Let f : A→ B. Is it true that

(a) ∀X,Y ∈ P(A) f(X) ∩ f(Y ) = f(X ∩ Y ) ?
(b) ∀X,Y ∈ P(B) f−1(X) ∩ f−1(Y ) = f−1(X ∩ Y ) ?

1.0.36. (8)
Let A1, A2, . . . be non-empty finite sets, and for all positive

integer n let fn be a map from An+1 to An. Prove that there exists an
infinite sequence x1, x2, . . . such that for all n the conditions xn ∈ An and
fn(xn+1

) = xn hold (König’s lemma).

1.0.37. (8)
Using König’s lemma (see exercise 1.0.36) verify that if all finite

subgraphs of a countable graph can be embedded into the plane, then the
whole graph can be embedded into the plane as well.

1.0.38. (7)
Show an example of an associative operation ◦ : P(R)×P(R)→

P(R) for which the union operation is left distributive but not right distribu-
tive. (Here P(R) denotes the set of all subsets of the real line R.)

1.0.3 Proving Techniques: Proof by Contradiction, In-

duction

1.0.39. (7)
We cut two diagonally opposite corner squares of a chessboard.

Can we cover the rest with 1×2 dominoes? And for the n×k “chessboard”?

1.0.40. (7)
Consider the set H := {2, 3, . . . n+ 1}. Prove that

∑

∅6=S⊂H

∏

i∈S

1

i
= n/2.
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(For example for n = 3 we have 1
2 +

1
3 +

1
4 +

1
2·3 +

1
2·4 +

1
3·4 +

1
2·3·4 = 3

2 .)

1.0.41. (6)
We cut a corner square of a 2n by 2n chessboard. Prove that the

rest can be covered with disjoint L-shaped dominoes consisting of 3 squares.

1.0.42. (3)
Prove that

(

1− 1

4

)(

1− 1

9

)

. . .

(

1− 1

n2

)

=
n+ 1

2n
.

Solution→

1.0.43. (4)

1. Let a1 = 1 and an+1 =
√
2an + 3. Prove that ∀n ∈ N an ≤ an+1.

2. Let a1 = 0.9 and an+1 = an − a2n. Prove that ∀n ∈ N an+1 < an and
0 < an < 1.

1.0.44. (7)
Prove that tan 1o is irrational!

Hint→

1.0.45. (5)
At least how many steps do you need to move the 64 stories high

Hanoi tower?

Towers of Hanoi

Hint→

1.0.46. (5)
For how many parts the plane is divided by n lines if no 3 of

them are concurrent?

1.0.47. (8)
For how many parts the space is divided by n planes if no 4 of

them have a common point and no 3 of them have a common line?

Hint→
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1.0.48. (5)
Prove that finitely many lines or circles divide the plane into do-

mains which can be colored with two colors such that no neighboring domains
have the same color.

1.0.49. (3)
Prove that the following identity holds for all positive integer n:

1

1 · 3 +
1

3 · 5 + . . .+
1

(2n− 1) · (2n+ 1)
=

n

2n+ 1
.

Solution→

1.0.50. (3)
Prove that the following identity holds for all positive integer n:

xn − yn
x− y = xn−1 + xn−2 · y + . . .+ x · yn−2 + yn−1

1.0.51. (3)
Prove that the following identity holds for all positive integer n:

13 + . . .+ n3 =

(
n · (n+ 1)

2

)2

.

Solution→

1.0.52. (3)
Prove that the following identities hold for all positive integer n:

1. 1− 1

2
+

1

3
− . . .− 1

2n
=

1

n+ 1
+ . . .+

1

2n
;

2.
1

1 · 2 + . . .+
1

(n− 1) · n =
n− 1

n
.

1.0.53. (3)
Prove that 1 · 4 + 2 · 7 + 3 · 10 + · · ·+ n(3n+ 1) = n(n+ 1)2.

1.0.54. (5)
Express the following sums in closed forms!

1. 1 + 3 + 5 + 7 + . . .+ (2n+ 1);

2.
1

1 · 2 · 3 + . . .+
1

n · (n+ 1) · (n+ 2)
;

3. 1 · 2 + . . .+ n · (n+ 1);

4. 1 · 2 · 3 + . . .+ n · (n+ 1) · (n+ 2).
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1.0.55. (4)
Prove that the following identity holds for all positive integer n:

√
n ≤ 1 +

1√
2
+ . . .+

1√
n
< 2
√
n.

Hint→

1.0.56. (6)
Show that for all positive integer n ≥ 6 a square can be divided

into n squares.

Solution→

1.0.57. (5)
A1, A2, . . . are logical statements. What can we say about their

truth value if
(a) A1 ∧ ∀n ∈ N An ⇒ An+1?
(b) If A1 ∧ ∀n ∈ N An ⇒ (An+1 ∧An+2)?
(c) If A1 ∧ ∀n ∈ N (An ∨An+1)⇒ An+2?
(d) If ∀n ∈ N ¬An ⇒ ∃k ∈ {1, 2, . . . , n− 1} ¬Ak?

1.0.58. (4)
Prove that

1 +
1

2 ·
√
2
+ . . .+

1

n · √n ≤ 3− 2√
n
.

Fibonacci Numbers

1.0.59. (6)
Let un be the n-th Fibonacci number (u0 = 0, u1 = 1, u2 = 1,

u3 = 2, u4 = 3, u5 = 5, u6 = 8, . . . ).
(a) u0 + u2 + . . .+ u2n =?
(b) u1 + u3 + . . .+ u2n+1 =?

1.0.60. (6)
Prove that u2n − un−1un+1 = ±1.

1.0.61. (3)
Let un be the n-th Fibonacci number. Prove that

1

3
· 1, 6n < un < 1, 7n.

1.0.62. (5)
Prove that any two consecutive Fibonacci-numbers are co-prime.
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1.0.63. (5)
Prove that

u21 + . . .+ u2n = unun+1.

1.0.64. (6)
Express the sums below in closed form!

1. u0 + u3 + . . .+ u3n;

2. u1u2 + . . .+ u2n−1u2n.

1.0.4 Solving Inequalities and Optimization Problems

by Inequalities between Means

1.0.65. (6)
Let a, b ≥ 0 and r, s be positive rational numbers with r+ s = 1.

Show that

ar · bs ≤ ra+ sb.

1.0.66. (3)
Prove that if a, b, c > 0, then the following inequality holds

a2

bc
+
b2

ac
+
c2

ab
≥ 3.

Solution→

1.0.67. (2)
Prove that

x2

1 + x4
≤ 1

2
.

1.0.68. (4)
Let a, b > 0. For which x is the expression

a+ bx4

x2
minimal?

Hint→

1.0.69. (3)
Let ai > 0. Prove that

a1
a2

+
a2
a3

+ . . .+
an−1

an
+
an
a1
≥ n

1.0.70. (8)
Which one is the greater? 10000011000000 or 10000001000001.
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1.0.71. (4)
Suppose that the product of three positive numbers is 1.

1. What is the maximum of their sum?

2. What is the minimum of their sum?

3. What is the maximum of the sum of their inverses?

4. What is the minimum of the sum of their inverses?

1.0.72. (4)
What is the maximum value of xy if x, y ≥ 0 and (a) x+ y = 10;

(b) 2x+ 3y = 10?

1.0.73. (2)
Prove that x2 +

1

x2
≥ 2 if x 6= 0.

1.0.74. (4)
Which rectangular box has the greatest volume among the ones

with given surface area?

Solution→

1.0.75. (4)
What is the maximum value of a3b2c if a, b, c are non-negative

and a+ 2b+ 3c = 5?

1.0.76. (3)
Prove that the following inequality holds for all a, b, c > 0!

a

b
+
b

c
+
c

a
≥ 3.

1.0.77. (4)
Calculate the maximum value of the function x2 · (1 − x) for

x ∈ [0, 1].

Solution→

1.0.78. (6)
Prove that the cylinder with the least surface area among the

ones with given volume V is the cylinder whose height equals the diameter
of its base.

Solution→

1.0.79. (5)
Prove that n! <

(
n+ 1

2

)n

.

Solution→
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1.0.80. (6)
What is the maximum of the function x3 − x5 on the interval

[0, 1]?

1.0.81. (6)
What is the greatest volume of a cylinder inscribed into a right

circular cone?

1.0.82. (6)
What is the greatest volume of a cylinder inscribed into the unit

sphere?

1.0.83. (10)
Prove that for any sequence a1, a2, . . . , an of positive real numbers,

1
1
a1

+
2

1
a1

+ 1
a2

+
3

1
a1

+ 1
a2

+ 1
a3

+. . .+
n

1
a1

+ 1
a2

+ . . .+ 1
an

< 2(a1+a2+. . .+an).

(KöMaL N. 189., November 1998)

Solution→

1.1 Real Numbers

1.1.1 Field Axioms

1.1.1. (4)
Using the field axioms prove the following statements:

If ab = 0, then a = 0 or b = 0;
−(−a) = a;
(a− b)− c = a− (b+ c);
−a = (−1) · a;
(a/b) · (c/d) = (a · c)/(b · d).

1.1.2. (4)
Using the field axioms prove the following statements:

(−a) · b = −(ab);
1/(a/b) = b/a;
(a− b) + c = a− (b− c).

1.1.3. (4)
Using the field axioms prove the following statement: (−a)(−b) =

ab.
Solution→

1.1.4. (4)
Using the field axioms prove the following statements:

1. (a+ b)(c+ d) = ac+ ad+ bc+ bd,

2. (−x) · y = − x · y.
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1.1.5. (5)
Prove that if ∗ is an associative binary operation, then any

bracketing of the expression a1 ∗ a2 ∗ . . . ∗ an has the same value.

1.1.2 Ordering Axioms

1.1.6. (4)
Using the field and ordering axioms prove the following state-

ments:

1. If a < b, then −a > −b;

2. If a > 0, then 1
a > 0;

3. If a < b and c < 0, then ac > bc.

1.1.7. (3)
Prove that for any real numbers a, b we have |a| − |b| ≤ |a− b| ≤

|a|+ |b|.

1.1.8. (4)
Using the field and ordering axioms prove that ∀a ∈ R a2 ≥ 0.

1.1.9. (5)
Show that no ordering can make the field of complex numbers

into an ordered field.
Hint→

1.1.10. (4)
Define a rational function (a function which can be written as the

ratio of two polynomial functions) to be positive if the leading coefficient of
its denominator and numerator have the same sign. Prove that this ordering
(r > q ⇔ r− q positive) makes the field of rational functions into an ordered
field.
Related problem: 1.1.12

1.1.11. (4)
Using the field and ordering axioms prove that a < b < 0 implies

1

b
<

1

a
< 0.

1.1.3 The Archimedean Axiom

1.1.12. (6)
Does the ordered field of rational functions satisfy the Archimedean

axiom?
Hint→

Related problem: 1.1.10
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1.1.13. (7)
Given an ordered field R and a subfield Q show that if

(∀a, b ∈ R)
(

(1 < a < b < 2)⇒
(

(∃q ∈ Q) (a < q < b)
))

,

then R satisfies the Archimedean axiom.
Hint→

1.1.14. (5)
In which ordered fields can the floor function be defined?

Answer→

1.1.4 Cantor Axiom

1.1.15. (8)
Does the ordered field of rational functions satisfy the Cantor

axiom?
Hint→

Related problem: 1.1.10

1.1.16. (5)
Answer the following questions. Explain your answer.

1. Can the intersection of a sequence of nested intervals be empty?

2. Can the intersection of a sequence of nested closed intervals be empty?

3. Can the intersection of a sequence of nested closed intervals be a one-
point set?

4. Can the intersection of a sequence of nested open intervals be non-
empty?

5. Can the intersection of a sequence of nested open intervals be a closed
interval?

1.1.17. (8)
Using the Cantor axiom give a direct proof of the fact that the

subset of irrational numbers is dense in the real line: every open interval
contains an irrational number.

1.1.18. (4)
Which axioms of the reals are satisfied for the set of rational

numbers (with the usual operations and ordering)?

Answer→

1.1.19. (9)
Does there exist an ordered field satisfying the Cantor axiom and

not satisfying the Archimedean axiom?
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1.1.20. (1)
Describe the negation of the Archimedean and the Cantor axiom

(do not start with negation!).

1.1.21. (2)
Describe the intersection of the following sequences of intervals:

1. In = [− 1
n ,

1
n ], 2. In = (− 1

n ,
1
n ), 3. In = [−5 + n, 3 + n),

4. In = [2− 1
n , 3+

1
n ], 5. In = (2− 1

n , 3+
1
n ), 6. In = [2− 1

n , 3+
1
n ),

7. In = [0, 1
n ], 8. In = (0, 1

n ), 9. In = [0, 1
n ), 10. In = (0, 1

n ].

1.1.5 The Real Line, Intervals

1.1.22. (3)
Prove that

√
2 is irrational.

1.1.23. (4)
Prove that

1.
√
3 is irrational; 2.

√
2√
3
is irrational; 3.

√
2+1
2 +3

4 +5 is irrational!

1.1.24. (3)
Let a, b ∈ Q and c, d be irrational. What can we say about the

rationality of a+ b, a+ c, c+ d, ab, ac and cd?

1.1.25. (3)
Prove that there is a rational and an irrational number in every

open interval.

1.1.26. (2)
How many (a) maxima (b) upper bounds of a set of real numbers

can have?

1.1.27. (2)
Determine the minimum, maximum, infimum, supremum of the

following sets (if they have any)!
1. [1, 2], 2. (1, 2), 3. { 1n : n ∈ N+}, 4. Q, 5. { 1n + 1√

n
:

n ∈ N+},
6. { n
√
2 : n ∈ N+}, 7. {x : x ∈ (0, 1) ∩Q}, 8. { 1n + 1

k : n, k ∈ N+},
9. {
√
n+ 1−√n : n ∈ N+}, 10. {n+ 1

n : n ∈ N+}

1.1.28. (2)
Are the following sets bounded from above or from below? What

is the maximum, minmimum, supremum and infimum? Which set is convex?

∅ {1, 2, 3, . . . } {1,−1/2, 1/3,−1/4, 1/5, . . . } Q R

[1, 2) (2, 3] [1, 2) ∪ (2, 3]
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1.1.29. (2)
Let H be a subset of the reals. Which properties of H are

expressed by the following formulas?

1. (∀x ∈ R)(∃y ∈ H)(x < y);

2. (∀x ∈ H)(∃y ∈ R)(x < y);

3. (∀x ∈ H)(∃y ∈ H)(x < y).

1.1.30. (3)
Let A ∩ B 6= ∅. What can we say about the connections among

supA, supB and sup(A ∪B), sup(A ∩B) and sup(A \B)?

1.1.31. (3)
Which subsets H ⊂ R satisfy that

(a) infH < supH; (b) infH = supH; (c) infH > supH?

1.1.32. (5)
What are the suprema and infima of the following sets?

a) { 1n |n ∈ N}.
b) { 1n |n ∈ N} ∪ {0}.
c) { 1n |n ∈ N} ∪ {−1

n |n ∈ N}.
d) { 1

nn |n ∈ N} ∪ {2, 3}.
e) { cosnnn |n ∈ N} ∪ [−6,−5] ∪ (100, 101).

1.1.33. (5)
Let H,K be non-empty subsets of the real line R. What is the

logical connection between the following two statements?
a) supH < infK;
b) ∀x ∈ H ∃y ∈ K x < y.

1.1.34. (4)
Let an =

√
n+ 1 + (−1)n√n.

inf{an|n ∈ N} =?

1.1.35. (5)
Let A,B be subsets of the real line R such that A ∪ B = (0, 1).

Does it imply that

inf A = 0 or inf B = 0 ?

1.1.36. (7)
Prove that all convex subset of R are intervals.
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1.1.6 Completeness Theorem, Connectivity, Topology

of the Real Line

1.1.37. (7)
Does the ordered field of the rational functions satisfy the com-

pleteness theorem: all non-empty set has a supremum?

Hint→ Solution→
Related problem: 1.1.10

1.1.38. (6)
Prove that if an ordered field satisfies the completeness theorem,

then the Archimedean axiom holds.
Hint→

1.1.39. (6)
Prove that if an ordered field satisfies the completeness theorem,

then the Cantor axiom holds.
Hint→

1.1.40. (9)
Define recursively the sequence xn+1 = xn

(
xn + 1

n

)
for any x1.

Show that there is exactly one x1 for which 0 < xn < xn+1 < 1 for any n.
(IMO 1985/6)

Hint→

1.1.7 Powers

1.1.41. (6)
Prove that (ax)y = axy if a > 0 and x, y ∈ Q.

1.1.42. (6)
Prove that (1 + x)r ≤ 1 + rx if r ∈ Q, 0 < r < 1 and x ≥ −1.

Solution→

1.1.43. (6)
Can xy be (ir)rational if x is (ir)rational and y is (ir)rational

(these are 8 exercises)?





Chapter 2

Convergence of Sequences

2.1 Theoretical Exercises

2.1.1. (3)
Suppose 0 < an → 0. Prove that there are infinitely many n for

which an > an+r for all r = 1, 2, . . ..

2.1.2. (2)
0 < an < 1 for all n ∈ N. Does it imply that ann → 0?

2.1.3. (2)
Suppose that a2n → B, a2n+1 → B. Does it imply that an →

B?

2.1.4. (3)
Does

an
3− an

→ 2

imply an → 2?

2.1.5. (3)
Prove that xn → a 6= 0 implies lim xn+1

xn
= 1.

2.1.6. (4)
Prove that if yn → 0 and Y = lim yn+1

yn
exist, then y ∈ [−1, 1].

2.1.7. (2)
Let an be a sequence of real numbers. Write down the negation

of the statement lim an = 7 (do not start with negation!).

2.1.8. (4)
Show that the sequence an is bounded if and only if for all

sequences bn → 0 the sequence anbn also tends to 0.

2.1.9. (4)
Give an example of a sequence an → ∞ such that ∀k = 1, 2, . . .

(an+k − an)→ 0.

31
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2.1.10. (4)
Give examples of sequences an, with the property

an+1

an
→ 1

such that
1. an is convergent; 2. an →∞;
3. an → −∞; 4. an is oscillating.

2.1.11. (5)
Suppose that anbn → 1, an+bn → 2. Does it imply that an → 1,

bn → 1?

2.1.12. (4)
Show that every convergent sequence has a minimum or a max-

imum.
Hint→

2.1.13. (3)
Prove that an ≥ 0 and an → a implies

√
an →

√
a.

2.1.14. (3)
Show that every sequence tending to infinity has a minimum.

2.1.15. (3)
Show that every sequence tending to minus infinity has a maxi-

mum.
Related problem: 2.1.12

2.1.16. (2)
Prove that an →∞ implies that

√
an →∞.

2.1.17. (3)
Suppose that an → −∞, and let bn = max{an, an+1, an+2, . . .}.

Show that bn → −∞.

2.1.18. (2)
Is it true that if xn is convergent, yn is divergent, then xnyn is

divergent?

Solution→

2.1.19. (3)
Let an be a sequence and a be a number. What are the implica-

tions among the following statements?
a) ∀ε > 0 ∃N ∀n ≥ N |an − a| < ε.
b) ∀ε > 0 ∃N ∀n ≥ N |an − a| ≥ ε.
c) ∃ε > 0 ∀N ∀n ≥ N |an − a| < ε.
d) ∀ε > 0 ∀N ∀n ≥ N |an − a| < ε.
e) ∃ε′ > 0 ∀0 < ε < ε′ ∃N ∀n ≥ N |an − a| < ε.

2.1.20. (3)

a) an → 1. Does it imply that ann → 1?

b) an > 0, an → 0. Does it imply that n
√
an → 0?
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c) an > 0, an → a > 0. Does it imply that n
√
an → 1?

d) cndn → 0. Does it imply that cn → 0 or dn → 0?

2.1.21. (1)
Show that 1. an → a ⇐⇒ (an − a) → 0, 2. an →

0 ⇐⇒ |an| → 0.

2.1.22. (1)
Show that limn→∞ an = ∞ ⇐⇒ ∀K ∈ R only finitely many

members of (an) are smaller than K.

2.1.23. (2)
Show that if ∀n ≥ n0 an ≤ bn and an →∞, then bn →∞.

2.1.24. (4)
Give examples showing that if an → 0 and bn → +∞, then anbn

is critical.

2.1.25. (1)
Show that if an → 0 and an 6= 0, then 1

|an| →∞.

2.1.26. (3)
Which of the following statements is equivalent to the negation

of an → A? What is the meaning of the rest? What are the implications
among them?

1. For all ε > 0 there are infinitely many members of an outside of (A −
ε,A+ ε).

2. There is an ε > 0 such that there are infinitely many members of an
outside of (A− ε,A+ ε).

3. For all ε > 0 there are only finitely many members of an in the interval
(A− ε,A+ ε).

4. There is an ε > 0 such that there are only finitely many members of an
in the interval (A− ε,A+ ε).

2.1.27. (3)
Is there a sequence of irrational numbers converging to (a) 1, (b)√

2?
Solution→

2.1.28. (3)
Give examples such that an − bn → 0 but an/bn 6→ 1, and

an/bn → 1 but an − bn 6→ 0.

2.1.29. (2)
Prove that if (an) is convergent, then (|an|) is convergent, too.

Does the reverse implication also hold?
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2.1.30. (3)
Does a2n → a2 imply that an → a? And does a3n → a3 imply that

an → a?
Solution→

2.1.31. (4)
Consider the sequence sn of arithmetic means

sn =
a1 + . . .+ an

n

corresponding to the sequence an. Show that if lim
n→∞

an = a, then lim
n→∞

sn =

a. Give an example when (sn) is convergent, but (an) is divergent.

2.1.32. (5)
Prove that if an →∞, then

a1 + a2 + . . .+ an
n

→∞.

Related problem: 2.1.31

2.1.33. (5)
Prove that if ∀n an > 0 and an → b, then n

√
a1a2 . . . an → b.

Related problem: 2.1.31

2.1.34. (4)
Consider the definition of an → b:

(∀ε > 0)(∃n0)(∀n ≥ n0)(|an − b| < ε).

Changing the quantifiers and their order we can produce the following state-
ments:

1. (∀ε > 0)(∃n0)(∃n ≥ n0)(|an − b| < ε);

2. (∀ε > 0)(∀n0)(∀n ≥ n0)(|an − b| < ε);

3. (∃ε > 0)(∃n0)(∃n ≥ n0)(|an − b| < ε);

4. (∃n0)(∀ε > 0)(∀n ≥ n0)(|an − b| < ε);

5. (∀n0)(∃ε > 0)(∃n ≥ n0)(|an − b| < ε).

Which properties of the sequence (an) are expressed by these statements?
Give examples of sequences (if they exist) satisfying these properties.

2.1.35. (4)
Consider the definition of an →∞:

(∀P )(∃n0)(∀n ≥ n0)(an > P ).

Changing the quantifiers and the orders we can produce the following state-
ments:
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1. (∀P )(∃n0)(∃n ≥ n0)(an > P );

2. (∀P )(∀n0)(∀n ≥ n0)(an > P );

3. (∃P )(∃n0)(∀n ≥ n0)(an > P );

4. (∃P )(∃n0)(∃n ≥ n0)(an > P );

5. (∃n0)(∀P )(∀n ≥ n0)(an > P );

6. (∀n0)(∃P )(∃n ≥ n0)(an > P ).

Which properties of the sequence (an) are expressed by these statements?
Give examples of sequences (if they exist) satisfying these properties.

2.1.36. (4)
Construct sequences (an) with all possible limit behavior (con-

vergent, tending to infinity, tending to minus infinity, oscillating), while
an+1 − an → 0 holds.

2.1.37. (3)
Prove that if an →∞ and (bn) is bounded, then (an+bn)→∞.

2.1.38. (3)
Prove that if (an) has no subsequence tending to infinity, then

(an) is bounded from above.

2.1.39. (4)
Prove that if (a2n), (a2n+1), (a3n) are convergent, then an is

convergent, too.

2.1.40. (3)
Prove that if an → a > 1, then (ann)→∞.

2.1.41. (4)
Prove that if an → a, with |a| < 1, then (ann)→ 0.

2.1.42. (4)
Prove that if an → a > 0, then n

√
an → 1.

2.1.43. (3)
Prove that if (an + bn) is convergent and (bn) is divergent, then

(an) is also divergent.

Hint→

2.1.44. (3)
Is it true that if (an · bn) is convergent and (bn) is divergent, then

(an) is divergent?

2.1.45. (3)
Is it true that if (an/bn) is convergent and (bn) is divergent, then

(an) is divergent?
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2.1.46. (3)
Let limn→∞ an = a, limn→∞ bn = b. Prove that max(an, bn) →

max(a, b).

2.1.47. (4)
Let ak 6= 0 and p(x) = a0 + a1x+ . . .+ akx

k. Prove that

lim
n→+∞

p(n+ 1)

p(n)
= 1.

Solution→

2.1.48. (4)
Show that if an > 0 and an+1/an → q, then n

√
an → q.

2.1.49. (4)
Give an example of a positive sequence (an) for which n

√
an → 1,

but an+1/an does not tend to 1.

2.1.50. (5)
There are 8 possibilities for a sequence, according to monotonicity,

boundedness and convergence. Which of these 8 classes are non-empty?

2.1.51. (5)
Assume that an → a and a < an for all n. Prove that an can be

rearranged to a monotone decreasing sequence.

Hint→

2.1.52. (6)
The sequence (an) satisfies the inequality an ≤ (an−1 + an+1)/2

for all n > 1. Prove that (an) cannot be oscillating.

2.1.53. (6)
Prove that if (an) is convergent and (an+1 − an) is monotone,

then n · (an+1−an)→ 0. Give an example for a convergent sequence (an) for
which n · (an+1 − an) does not tend to 0.

2.1.54. (4)
Prove that if the sequence (an) has no convergent subsequence,

then |an| → ∞.
Solution→

2.1.55. (5)
Prove that if the sequence (an) is bounded and all of its convergent

subsequences tend to b, then an → b.

2.1.56. (4)
Prove that if all subsequence of a sequence (an) have a subse-

quence tending to b, then an → b.

2.1.57. (4)
Does an+1 − an → 0 imply that a2n − an → 0?
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2.1.58. (4)
Give examples such that an →∞ and

1. a2n − an → 0; 2. an2 − an → 0; 3. a2n − an → 0.

2.1.59. (5)
Prove that every sequence can be obtained as the product of a

sequence tending to 0, and a sequence tending to infinity.

2.1.60. (5)
Assume that an → 1. What can we say about the limit of the

sequence (ann)?

2.1.61. (5)
How would you define 00, ∞0 and 1∞? Explain it.

2.2 Order of Sequences, Threshold Index

2.2.1. (3)
Prove that

1 · 1
22
· · · 1

33
· . . . · 1

nn
<

(
2

n+ 1

)n(n+1)
2

.

2.2.2. (5)
Prove that nn+1 > (n+ 1)n if n > 2.

Solution→
Related problem: 2.6.8

2.2.3. (8)
Prove that

√
2 · 4
√
4 · 8
√
8 · . . . ·2n

√
2n < n+ 1.

Solution→

2.2.4. (5)
Prove that 2n > nk holds for all sufficiently (depending on k)

large n.

Solution→

2.2.5. (5)
Prove that the following two statement are true for n big enough.

1. 2n > n3, 2. n2 − 6n− 100 > 8n+ 11

2.2.6. (5)
Find an no ∈ N such that ∀n > no the following statements hold:

1. n2 − 15n+ 124 > 14512n, 2. n3 − 16n2 + 25 > 15n+ 32162,
3. (1.01)

n
> 1000, 4. n! > n5.
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2.2.7. (5)
Find an no ∈ N such that ∀n > no the following holds:

1. (1.01)
n
> n, 2. (1.01)

n
> n2, 3. (1.0001)

n
> 1000 · √n,

4. 100n < n! 5. 1
2 <

2n2+3n−2
3n2−4n+20 < 1, 6. 3n−1000 ·2n > n3+100n2,

7.
√
n+ 1−√n > 1

n , 8. n! >
(
n
2

)n
2 , 9. n

(
n
e

)n
> n! >

(
n
e

)n
.

2.2.8. (4)
Find an no ∈ N such that ∀n > n0 the following holds:

1.
√
n+ 1−√n < 0.1 2.

√
n+ 3−√n < 0.01

3.
√
n+ 5−

√
n+ 1 < 0.01 4.

√
n2 + 5− n < 0.01.

2.2.9. (4)
Prove that the sequence a1 = 1, an+1 = an + 1

an
has a member

which is greater than 100.

2.2.10. (4)
Prove that for the sequence a1 = 1, an+1 = an + 1

an
we have

a10001 > 100 (see the 2.2.9 exercise and its solution.)

Solution→
Related problems: 2.2.9, 2.5.19

2.2.11. (5)
Determine the limit of the following recursively defined sequence!

a1 = 0, an+1 = 1/(1 + an) (n = 1, 2, . . .).

Hint→

2.2.12. (2)
Using the definition calculate the limit (if exists) of the following

sequences. Give a threshold index to ε = 10−4!

1/
√
n; (−1)n

2.2.13. (4)
Using the definition calculate the limit (if exists) of the following

sequences. Give a threshold index to ε = 10−6!

2n+ 1

n+ 1
;

√

n2 + n+ 1−
√

n2 − n+ 1

2.2.14. (4)
Using the definition calculate the limit (if exists) of the following

sequences. Give a threshold index to ε = 10−4, to P = 106 and to P = −106.

1 + 2 + . . .+ n

n2
; n2 − n3; n

(√
n+ 1−√n

)
; sinn
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2.2.15. (4)
Find an n0 ∈ N such that ∀n > n0 the following holds:

1. n2 > 6n+ 15 2. n2 > 6n− 15 3. n3 > 6n2 + 15n+ 37
4. n3 > 6n2 − 15n+ 37 5. n3 − 4n+ 2 > 6n2 − 15n+ 37
6. n5 − 4n2 + 2 > 6n3 − 15n+ 37
7. n5 + 4n2 − 2 > 6n3 + 15n− 37.

2.2.16. (4)
Find an n0 ∈ N such that ∀n > n0 the following holds:

1. 2n > n4, 2. (1 + 1
n )
n ≥ 2; 3. 1, 01n > 100, 4. 1, 01n > 1000;

5. 0, 9n < 1
100 ; 6. n

√
2 < 1, 01, 7.

√
n+ 1−√n < 1

100 ,

8.
√
n2 + 5− n < 0, 01, 9. n7 > 100n5,

10. n8 + n3 − 10n2 > n5 + 1000n.

2.2.17. (4)
Calculate the limit of the following sequences and find an n0

threshold for ε > 0.

1. 1/
√
n; 2. (2n+1)/(n+1); 3. (5n−1)/(7n+2); 4. 1/(n−√n);

5. (1 + . . .+ n)/n2; 6. (
√
1 +
√
2 + . . .+

√
n)/n4/3;

7. n ·
(√

1 + (1/n)− 1
)

; 8.
√
n2 + 1 +

√
n2 − 1− 2n;

9. 3
√
n+ 2− 3

√
n− 2; 10.

1

1 · 2 +
1

2 · 3 + . . .+
1

(n− 1) · n.

2.2.18. (4)
Find an n0 threshold for P for the following sequences.

1. n−√n; 2. (1 + . . .+ n)/n; 3. (
√
1 +
√
2 + . . .+

√
n)/n;

4.
n2 − 10n

10n+ 100
; 5. 2n/n;

2.2.19. (5)
Prove that there is an N natural number such that ∀n > N the

following inequality holds:
(
3

2

)n

> n2.

2.2.20. (5)
Find an N natural number such that ∀n > N the following

inequality holds:

a) 10n+11n+12n < 13n; b) 1.01n > n; c)
√
n+
√
n+ 2+

√
n+ 4 < n0,51.

2.2.21. (4)
Find an N natural number such that ∀n > N the following

inequality holds: 1.0001n > n100.
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2.2.22. (4)
Find an N natural number such that ∀n > N the following

inequality holds:
1

n− 5
√
n
>

10n2

2n − 100
.

2.3 Limit Points, liminf, limsup

2.3.1. (3)
Find a non-convergent sequence with exactly one limit point.

Solution→

2.3.2. (1)
Given a1, . . . , ap ∈ R, find a sequence with exactly these limit

points.

2.3.3. (2)
Calculate the limit points of the sets B(0, 1), Ḃ(0, 1), N, Q and

{1/n : n ∈ N}!

2.3.4. (5)
Prove that the set of limit points of a sequence (or a set) is

closed.

2.3.5. (6)
Find a sequence such that the set of limit points of it is [0, 1].

Solution→

2.3.6. (6)
Prove that a limit point of the set of limit points of a set is a

limit point of the original set.

2.3.7. (2)
What are the limit points, limsup and liminf of the following

sequences?
n
√
n; (−1)n +

1

n
;

{√
n
}

2.3.8. (2)
What is the limsup and liminf of the following sequence?

an =
nk

2n
.

2.3.9. (4)
Using the definition of lim sup and lim inf prove that lim inf an ≤

lim sup an.
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2.3.10. (4)
Prove that if (an) is convergent and (bn) is an arbitrary sequence,

then

lim(an + bn) = lim an + lim bn.

2.3.11. (3)
Prove that if an → a > 0 and (bn) is an arbitrary sequence, then

lim(an · bn) = a · lim bn and

lim(an · bn) = a · lim bn.

2.3.12. (5)
Prove that if

(i) an → a ≥ 1 and (bn) is bounded, then

lim abnn = alim bn and lim abnn = alim bn .

(ii) an → a ≤ 1 and (bn) is bounded, then

lim abnn = alim bn and lim abnn = alim bn .

2.3.13. (4)
Prove that if the sequence (an) is bounded with lim inf an > 0

and bn → 0, then abnn → 1.

2.3.14. (5)
Prove that for an arbitrary sequence of real numbers a1, a2, . . .

lim inf
a1 + a2 + . . .+ an

n
≥ lim inf an

and

lim sup
a1 + a2 + . . .+ an

n
≤ lim sup an.

2.3.15. (5)
Prove that if an → a, then

inf
{
sup{an, an+1, an+2, . . .} : n ∈ N

}
= a.
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2.4 Calculating the Limit of Sequences

2.4.1. (1)
Guess the limits, and prove using the definition:

1. lim (−1)n

n =? 2. lim 1
n! =?

3. lim 2n
n2+1 =? 4. lim bn =? for 0 < b < 1.

2.4.2. (2)
Guess the limit, and prove using the definition:

lim
n

2n
=?

2.4.3. (2)
Determine the limit of

n2 + 1

n+ 1
− an for all values of a.

2.4.4. (3)
Determine the limit of

√
n2 − n+ 1− an for all values of a.

2.4.5. (3)
Prove that n

√
2→ 1.

2.4.6. (4)
Calculate limn→∞

n
√
2n − n.

Solution→

2.4.7. (4)
Guess the limits, and prove using the definition:

lim
2n

n!
=?

2.4.8. (3)

lim
n2 + 6n3 − 2n+ 10

−4n− 9n3 + 1010
=?

2.4.9. (3)

lim
n+ 7

√
n

2n
√
n+ 3

=?

2.4.10. (4)
Calculate the following:

lim
n100

1, 1n
=?

Hint→
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2.4.11. (5)
Calculate the limit of the sequence n

√
n.

2.4.12. (4)
Calculate the limit of the sequence n

√
n!.

2.4.13. (4)
Calculate the limit of the following sequences.

1.
n5 − n3 + 1

3n5 − 2n4 + 8
; 2.

√

n4 + n2 − n2; 3. n
√
6n − 5n.

2.4.14. (4)
Calculate the limit of the following sequences.

1. n
√
3 2. n

√
1
n 3.

(
1 + log 2

n

)n

4. n
√
2n + n

5. n
√
1 + 2 + 3 + . . .+ n 6. n

√
1n + 2n + 3n + . . .+ 100n

7.
n2 + (n+ 2)3

n2 −
√

(n2 + 1)(n4 + 2)
8.

n1002n + 3n
(√

4n + 1− 2n + n5
)
(5n+6 − 8)

2.4.15. (4)
Calculate the limit of the following sequences.

1.
3n+ 16

4n− 25
, 2. n ·

(√

1 +
1

n
− 1

)

, 3.
1

n
· n

2 + 1

n3 + 1
, 4.

5− 2n2

4 + n
,

5.
sin(n) + n

n
, 6.

2n3 + 3
√
n

1− n3 , 7. n
√
n+ 5n, 8.

2n + n!

nn − n1000 ,

9. n
√
nn − 5n, 10.

sin(n)

n
, 11.

5n2 + (−1)n
8n

, 12.
6n+ 2n2 · (−1)n

n2
.

2.4.16. (4)
Calculate the limit of the following sequences.

1.
n

√

2n+
√
n, 2.

n7 − 6n6 + 5n5 − n− 1

n3 + n2 + n+ 1
, 3.

n3 + n2
√
n−√n+ 1

2n3 − 6n+
√
n− 2

,

4.
n

√

1

n
− 2

n2
,

5. n
√
2n + 3n, 6.

√
2n+ 1√
3n+ 4

, 7. log
n+ 1

n+ 2
, 8.

7n − 7−n

7n + 7−n
,

9.
(2n+ 3)5 · (18n+ 17)15

(6n+ 5)20
, 10.

√
4n2 + 2n+ 100

3
√
6n3 − 7n2 + 2

, 11.
4
√
n3 + 6

3
√
n2 + 3n− 2

,

12. n ·(
√
n+ 1−√n), 13.

2n + 5n

3n + 1
, 14. n ·(

√

n2 + n−
√

n2 − n).
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2.4.17. (4)

lim
1

n(
√
n2 − 1− n)

=?

Solution→

2.4.18. (4)

lim

(
4n+ 1

4n+ 8

)3n+2

=?

2.4.19. (4)
Let a > 0.

lim n
√
n+ an =?

Hint→

2.4.20. (7)
Is the sequence

an =
1

n
+

1

n+ 1
+ . . .+

1

2n

convergent?

2.4.21. (4)

lim
1− 2 + 3− 4 + . . .− 2n

2n+ 1
=?

2.4.22. (5)
Is

xn =
sin 1

2
+

sin 2

22
+ . . .+

sinn

2n

convergent?

Hint→

2.4.23. (4)
Calculate the following:

lim
(√

2 · 4
√
2 · 8
√
2 · . . . · 2n

√
2
)

=?

1.4-8c

2.4.24. (4)
Is

n
√

n2 + cosn

convergent?

Solution→
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2.4.25. (4)
Calculate the following

lim n
√
2n + sinn.

2.4.26. (5)
Calculate the following

lim
n
√
n!

n
.

2.4.27. (4)
Calculate the limit of the following sequences.

1.
6n4 + 2n2 · (−1)n

n4
, 2.

√

n2 + 2 +
√

n2 − 2− 2n;

3.
n
√
nn − 5n

n
, 4. n · (

√

n2 + n−
√

n2 − n).

2.4.28. (5)
Suppose that a1, a2, . . . , ak > 0. Calculate the limit of the

sequence n
√
an1 + an2 + . . .+ ank .

2.4.29. (5)
Calculate the limit of the sequence

(√

n+
√

n+
√
n−√n

)

.

2.4.30. (4)
Let |a|, |b| < 1.

lim
1 + a+ a2 + . . .+ an

1 + b+ b2 + . . .+ bn
=?

2.4.31. (4)
Calculate:

1. lim n2√
12 + 2n + 3n + . . .+ nn =?

2. lim n

√

1 +
1

2
+

1

3
+ . . .+

1

n
=?

3. lim

1

n2
+

1

(n+ 2)3

1

n!
− 1
√

(n2 + 1)(n4 + 2)

=?
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2.4.32. (4)

lim

1 +
1√
2
+

1√
3
+ . . .+

1√
n√

n
=?

2.4.33. (4)

lim
n→∞

n

√

1 +
√
2 +

3
√
3 + . . .+ n

√
n =?

2.5 Recursively Defined Sequences

2.5.1. (2)
Let a1 = 1 and an+1 = 1 + 1

1+ 1
an

. Prove that an is monotone

increasing.

2.5.2. (3)
Study the sequence a1 = 0.9 an+1 = an − a2n. Is it monotone?

bounded? Does it have a limit?

2.5.3. (4)
Let a1 = 0.9, an+1 = an−a5n. Is there a member of the sequence

which is smaller than 1
1010 ?

2.5.4. (4)
Define the sequence (an)

∞
n=1by the recursion

a1 = 10; an+1 =
2an
an + 1

.

(a) Prove that the sequence is bounded by giving explicit upper and lower
bounds.

(b) Prove that an → 1. Check the definition and find n0 for all ε > 0.

2.5.5. (3)
Let

x1 = 1, xn+1 =
√
3xn.

Is xn convergent? If yes, what is the limit?

2.5.6. (3)
Study the sequence a1 = 0, an+1 =

√
2 + an. Is it monotone?

bounded? Does it have a limit?
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2.5.7. (3)
Determine the limit of the following recursively defined sequences!

1. a1 = 0, an+1 = 1/(2− an) (n = 1, 2, . . .);

2. a1 = 0, an+1 = 1/(4− an) (n = 1, 2, . . .);

3. a1 = 0, an+1 = 1/(1 + an) (n = 1, 2, . . .);

4. a1 =
√
2, an+1 =

√
2
√
an (n = 1, 2, . . .);

2.5.8. (6)
Let A > 0, x1 = 1 and xn+1 =

xn + A
xn

2
. Prove that xn →

√
A.

2.5.9. (3)
Let x1 = 1, xn+1 =

√
xn + 2. Prove that

(a) The sequence xn is monotone increasing;
(b) The sequence xn is bounded;
(c) The limit of the sequence xn is 2.

2.5.10. (4)
Let x1 = 1, xn+1 =

6

5− xn
. Calculate the limit of xn.

2.5.11. (4)
Let a0 = 0, a1 = 1, and an+2 = an+an+1

2 (n = 0, 1, 2, . . .).
lim an =?

2.5.12. (2)
Let a1 = 100, an+1 =

√
an + 6. Prove that

(a) the sequence an is monotone;
(b) the sequence an is bounded.
(c) What is the limit of the sequence an?

2.5.13. (4)
Let a1 = 1 and an+1 = an +

1

a100n

if n ≥ 1. Is this sequence

bounded? If yes what is the limit?

2.5.14. (4)
Define the sequence (xn)

∞
n=1 by the following recursion: let

x1 = 3
√
2, and xn+1 =

8

6− xn
if n ≥ 1. What is the limsup of the sequence?

2.5.15. (5)
Let a1 = 10 and an+1 =

2an
a2n + 1

. lim an =?

2.5.16. (5)
Does the sequence

a1 = 1, an+1 =
an + 4

an

2

converge? If yes, then what is the limit?
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2.5.17. (5)
Determine the limit of the following recursively defined sequence!

a1 = 0, an+1 = 1/(4− an) (n = 1, 2, . . .);

2.5.18. (3)
Let the sequence (an) be given by the following recursion: a1 = 0,

an+1 =
√
an + 6. Prove that (an) is convergent and calculate its limit.

2.5.19. (4)
Let a1 = 1, an+1 = an +

2

a2n
. Prove the existence of an n ∈ N,

for which an ≥ 10.
Solution→

Related problem: 2.2.10

2.5.20. (2)
Let a1 = 1 and an+1 =

√
2an + 3. Prove that an ≤ an+1 ∀n ∈

N.

2.5.21. (4)
Let a1 = 1,

an+1 = an +
1

a3n
.

Is it true that ∃n an > 1010?

2.6 The Number e

2.6.1. (3)
Prove the following inequality:

(

1 +
1

n

)n

≥ 2.

2.6.2. (5)
Prove the following inequalities:

(n

e

)n

< n! < e ·
(n

2

)n

.

2.6.3. (7)
Prove the following inequalities.

0 < e−
(

1 +
1

n

)n

<
3

n
.
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2.6.4. (5)
Prove that

(

1 +
1

n

)n+1

>

(

1 +
1

n+ 1

)n+2

,

in other words the sequence an =
(
1 + 1

n

)n+1
is strictly monotone decreasing.

Solution→

2.6.5. (5)
Prove that

n+ 1 < e1+
1
2+...+

1
n < 3n.

2.6.6. (9)
Which one is greater? The number e or

(

1 +
1

n

)n+ 1
2

?

2.6.7. (5)
Prove that for all n ∈ N we have n! >

(
n+ 1

e

)n

, and for n ≥ 7

we have n! <
nn+1

en
.

2.6.8. (6)
Which one is the greater? 10000011000000 or 10000001000001.

1.2-3

2.6.9. (7)
Find positive constants c1, c2 for which

c1 ·
nn+

1
2

en
< n! < c2 ·

nn+
1
2

en

for all n ∈ N.

2.6.10. (4)
Calculate the limit of the sequence

an =

(
n+ 2

n+ 1

)n

.

Solution→

2.6.11. (4)
Calculate:

lim

(
n+ 3

n− 1

)3n+8

=?



50 2. Convergence of Sequences

2.6.12. (7)
Verify that if n · an → a and bn/n→ b, then (1 + an)

bn → eab.

2.6.13. (7)
Prove for every sequence (an):

lim inf

(

1 +
1

n

)an

= elim inf
an
n .

2.7 Bolzano–Weierstrass Theorem and Cauchy

Criterion

2.7.1. (4)
The sequence an is monotone and it has a convergent subsequence.

Does it imply that an is convergent?

Solution→

2.7.2. (5)
Prove that if |an+1−an| ≤ 2−n for all n, then (an) is convergent.

2.7.3. (8)
Prove that if the Bolzano–Weierstrass theorem holds in an ordered

field, then it is isomorphic to R.

2.7.4. (8)
Prove that if in an Archimedean ordered field every Cauchy

sequence is convergent, then every bounded set has a least upper bound.

2.7.5. (8)
Prove that every Cauchy sequence is convergent, using the one-

dimensional Helly theorem.

2.8 Infinite Sums: Introduction

2.8.1. (4)
∞∑

n=1

1

n(n+ 1)
=?

2.8.2. (5)
∞∑

n=1

1

n2 − 3n+ 1
2

=?
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2.8.3. (3)
Convergent or divergent?

∑ n100

1.001n

2.8.4. (3)
Convergent or divergent?

∑ 1
√

(2i− 1)(2i+ 1)

2.8.5. (2)
∞∑

i=1

(
1

2i
+

1

3i

)

=?

2.8.6. (5)
Prove that

∞∑

n=1

1

n2
< 2.

Solution→

2.8.7. (2)
Suppose that

∑
an is convergent. Show that lim(an+1 + an+1 +

. . .+ an2) = 0.

2.8.8. (4)
Find a sequence an such that

∑
an is convergent, and an+1/an

is not bounded.
Solution→

2.8.9. (6)
Convergent or divergent?

∑ (2k)!

4k(k!)2

2.8.10. (6)
Convergent or divergent?

∑ (2k)!

4k(k!)2
1

2k + 1
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2.8.11. (7)
For which z ∈ C is the following sum convergent?

∑

zn
∑ zn

n

∑ zn

n2

2.8.12. (4)
Convergent or divergent?

1000

1
+

1000 · 1001
1 · 3 +

1000 · 1001 · 1002
1 · 3 · 5 + . . .

2.8.13. (3)
Convergent or divergent?

a)

∞∑

n=1

1

n(n+ 1)(n+ 2)
b)

∞∑

n=1

n2

(2 + 1
n )
n

2.8.14. (5)
Convergent or divergent?

∞∑

n=1

( n
√
e− 1)

2.8.15. (5)
Show that if |an+1 − an| < 1

n2 , then (an) is convergent.

Hint→

2.8.16. (7)
hn :=

∑n
i=1

1
i . Prove that

1

h21
+

1

2h22
+ . . .+

1

nh2n
< 2.

2.8.17. (5)
For which x and p is the sum

∑ xn

np

convergent?

2.8.18. (4)
Convergent or divergent?

∑ 7n√
n!
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2.8.19. (4)
For which x is the sum

∑ xn

an + bn

convergent?

2.8.20. (5)
(a) Prove that if lim inf

log 1
ak

log k > 1, then
∑
ak is convergent.

(b) Prove that if lim sup
log 1

ak

log k < 1, then
∑
ak is divergent.

(c) Construct a sequence an such that
log 1

ak

log k → 1, and
∑
ak convergent.

(d) Construct a sequence an such that
log 1

ak

log k → 1, and
∑
ak divergent.

2.8.21. (4)
For which x the sum

∑

log

(
k + 1

k

)

xk

is convergent?





Chapter 3

Limit and Continuity of

Real Functions

3.1 Global Properties of Real Functions

3.1.1. (2)
Show that the following functions are injective on the given set

H, and calculate the inverse.

1. f(x) = 3x− 7, H = R; 2. f(x) = x2 + 3x− 6, H = [−3/2,∞).

3.1.2. (2)
Show that the following functions are injective on the given set

H, and calculate the inverse.

1. f(x) =
x

x+ 1
, H = [−1, 1]; 2. f(x) =

x

|x|+ 1
, H = R.

Solution→
3.1.3. (7)

Find a function f : [−1, 1]→ [−1, 1] such that f(f(x)) = −x ∀x ∈
[−1, 1].

3.1.4. (4)
Construct a non-constant periodic function with arbitrarily small

periods.

3.1.5. (1)
Find the inverse of f(x) =

2x− 3

3x− 2
on R \ { 23}.

3.1.6. (2)
Are the following functions injective on [−1, 1]?

a) f(x) =
x

x2 + 1
, b) g(x) =

x2

x2 + 1
.

55
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Solution→

3.1.7. (2)
Prove that all function f : R→ R can be obtained as the sum of

an even and an odd function.

3.1.8. (2)
Let

f(x) =

{

x3 if x rational

−x3 if x irrational.

Does f(x) have a unique inverse on (−∞,+∞)?

3.1.9. (4)
Let f(x) = max{x, 1− x, 2x− 3}. Is it monotone, or convex?

3.1.10. (2)
Prove that if f is strictly convex on the interval I, then every

line intersects the graph of f in at most 2 points.

3.1.11. (1)
Does there exist a function f : (0, 1)→ R which is bounded, but

has no maximum?

3.1.12. (2)
Does there exist a function f : [0, 1]→ R which is bounded, but

has no maximum?

3.1.13. (4)
Does there exist a monotone function f such that

1. D(f) = [0, 1], R(f) = (0, 1);
2. D(f) = [0, 1], R(f) = [0, 1] ∪ [2, 3];
3. D(f) = [0, 1], R(f) = [0, 1) ∪ [2, 3];
4. D(f) = [0, 1], R(f) = [0, 1) ∪ (2, 3]?

3.1.14. (8)
Does there exist a function which attains every real values on

any interval?

3.1.15. (5)
Prove that xk is strictly convex on [0,∞), for all k > 1 integer.

3.1.16. (3)
Prove that if a1, ..., an ≥ 0 and k > 1 is an integer, then

a1 + ...+ an
n

≤ k

√

ak1 + ...+ akn
n

.

3.1.17. (4)
Prove that if g : A → B and f : B → C are convex, and f is

monotone increasing, then f ◦ g is convex.

3.1.18. (4)
Prove that if f is convex, then it can be obtained as the sum of

a monotone increasing and a monotone decreasing function.
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3.1.19. (7)
Can we obtain the function x2 as a sum of two periodic func-

tions?

3.1.20. (10)
Can we obtain the function x2 as a sum of three periodic func-

tions?

3.2 Continuity and Limits of Functions

3.2.1. (2)
Find a good δ or L for ε > 0 or for K for the following functions.

1. lim
x→1+

(x2 + 1)/(x− 1), 2. lim
x→∞

sin(x)√
x

.

3.2.2. (2)
Determine the points of discontinuity of the following functions.

What type of discontinuities are these?

1. f(x) =
x3 − 1

x− 1
, 2. g(x) =

x2 − 1

|x− 1| ,

3. h1(x) = x[
1

x
], 4. h2(x) = x2[

1

x
].

3.2.3. (3)
Determine the points of discontinuity of the following functions.

What type of discontinuities are these?

1.
x3 − 1

(x− 1)(x− 2)(x− 3)
, 2.

1
[
1
x

] .

3.2.4. (2)
Determine the points of discontinuity of the following functions.

What type of discontinuities are these?

a) f(x) =
x− 2

x2 − x− 2
, b) g(x) = sgn

({
1

x

})

.

3.2.5. (2)
Prove that lim

x→a
f(x) = b ⇐⇒ lim

x→a−0
f(x) = lim

x→a+0
f(x) = b.

3.2.6. (1)
Define: limx→a− f(x) = −∞, limx→−∞ f(x) = b and

limx→−∞ f(x) = +∞.

3.2.7. (1)
Formulate the negation of limx→a f(x) = +∞!

3.2.8. (1)
Prove that the function [x] is continuous in a if a is not an integer,

and left-continuous if a is an integer.
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3.2.9. (2)
In which points are the following functions continuous?

1. f(x) =

{

x if 1
x ∈ N

0 if 1
x 6∈ N

, 2. f(x) =

{

3x+ 7 if x ∈ Q

4x if x 6∈ Q
,

3. f(x) =

{

x2 if x ≥ 0

cx if x < 0
.

3.2.10. (2)
Where are they continuous?

1. Riemann-function, 2. sin
1

x
, 3. x sin

1

x
.

3.2.11. (2)
Prove that if f : R → R and g : R → R are continuous and

f(a) < g(a), then a has a neighborhood, where f(x) < g(x).

3.2.12. (2)
Let f be convex in (−∞,∞) and assume that lim

x→−∞
f(x) =∞.

Is it possible that lim
x→∞

f(x) = −∞?

3.2.13. (2)
Let f be convex in (−∞,∞) and assume that lim

x→−∞
f(x) = 0.

Is it possible that lim
x→∞

f(x) = −∞?

3.2.14. (1)
Find a monotone function f : [0, 1]→ [0, 1] with infinitely many

points of discontinuity.

3.2.15. (3)
The continuity of the function f : R→ R at the point a is defined

by:
(∀ε > 0)(∃δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ε).
Consider the following variations of this formula.
(∀ε > 0)(∀δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ε);
(∃ε > 0)(∀δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ε);
(∃ε > 0)(∃δ > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ε);
(∀δ > 0)(∃ε > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ε);
(∃δ > 0)(∀ε > 0)(∀x)(|x− a| < δ ⇒ |f(x)− f(a)| < ε).
Which properties of f are described by these formulas?

3.2.16. (1)
Formulate the definition using the letters ε, δ, P,Q etc.:

lim
−∞

f = 1; lim
t→t0+0

s(t) = 0; lim
ζ→−0

g(ζ) = −∞

lim
ϑ→−1

h(ϑ) =∞; lim
ξ→−∞

u(ξ) = 2.
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3.2.17. (1)
Formulate the definition using the letters ε, δ,K,L etc.

lim
1
f =∞; lim

η→η0−
s(η) = 2; lim

x→∞
g(x) = −∞;

lim
ω→ω0−

s(ω) = 2; lim
0+

g = 1; lim
∞
h = 1.

3.2.18. (2)
Prove that if f and g are continuous in the point a, then max(f, g)

and min(f, g) are also continuous in the point a.

3.2.19. (2)
Does the continuity of g(x) = f(x2) imply the continuity of

f(x)?

3.2.20. (7)
Assume that g(x) = lim

t→x
f(t) exists in every point. Prove that

g(x) is continuous.

Hint→

3.2.21. (3)
Find an f and g such that lim

x→α
f(x) = β, lim

x→β
g(x) = γ, but

lim
x→α

g(f(x)) 6= γ.

3.2.22. (2)
Can we extend (

√
x− 1)/(x− 1) to x = 1 continuously?

3.2.23. (3)
Prove that if f : R → R is periodic and limx→∞ f(x) = 0, then

f is identically zero.

3.2.24. (2)
Prove that a function f : R→ R is continuous if and only if the

preimage of every open set is open.

3.2.25. (7)
Prove that if a function R → R is continuous in every rational

point, then there is an irrational point as well where it is continuous.

3.2.26. (8)
Suppose that the function f : R→ R is continuous, and f(n·a)→

0 for all a > 0. Prove that lim
x→∞

f = 0.

3.2.27. (2)
In which points is the following function continuous?

f(x) =

{

sin 1
x if x 6= 0

0 if x = 0
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3.2.28. (2)
In which points is the following function continuous?

f(x) =

{

x sin 1
x if x 6= 0

0 if x = 0

3.2.29. (2)
In which points is the following function continuous?

f(x) =

{

e−
1
x2 if x 6= 0

0 if x = 0

3.2.30. (3)
Prove that if f : [0, 1]→ R is continuous, then g(x) := min{f(x), 0}

is also continuous.

3.2.31. (8)
What is the cardinality of the set of continuous R → R func-

tions?

3.2.32. (7)
Is there an R → R function for which the limit is ∞ at every

point?

3.2.33. (2)

lim
x→∞

(

{2x}2 − 4{x}2
)

=? lim
x→∞

(

{2x}2 − 4{x}2
)

=?

3.3 Calculating Limits of Functions

3.3.1. (5)

lim
x→0

sinx

x
=? lim

x→0

ex − 1

x
=?

3.3.2. (5)

lim
x→0

log(1 + x)

x
=?

3.3.3. (4)

lim
x→1

x+ x2 + . . .+ xn − n
x− 1

=?
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3.3.4. (4)

lim
x→0

sin 3x

sin 5x
=?

3.3.5. (4)

lim
x→0

1− cosx

x2
=?

3.3.6. (4)

lim
x→3

√
x+ 13− 2

√
x+ 1

x2 − 9
=?

3.3.7. (4)

lim
x→−2

3
√
x− 6 + 2

x3 + 8
=?

3.3.8. (4)

lim
x→∞

(

√

x+

√

x+
√
x−√x

)
=?

3.3.9. (4)

lim
x→0

(sin
√
x+ 1− sin

√
x) =?

3.3.10. (4)

lim
x→0

√
1− cosx2

1− cosx
=?

3.3.11. (4)

lim
x→a

sin(a+ 2x)− 2 sin(a+ x) + sin(a)

x2
=?

3.3.12. (4)

lim
x→π

3

sin(x− π
3 )

1− 2 cosx
=?
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3.3.13. (5)

lim
x→π

6

2 sin2 x+ sinx− 1

2 sin2 x− 3 sinx+ 1
=?

3.3.14. (5)
Let

f(x) =
(1 + x

2 + x

) 1−
√

x
1−x

limx→0 f(x) =?, limx→1 f(x) =?, limx→∞ f(x) =?

3.3.15. (4)

lim
x→−∞

log(1 + ex)

x
=?

3.3.16. (5)

lim
x→π

6

x2 sinx− π2

72

x− π
6

=?

3.3.17. (6)

lim
x→a

( sinx

sin a

) 1
x−a

=?

3.3.18. (6)

lim
x→1/2

( x+ 2

2x− 1

)4x2−1

=?

3.3.19. (6)

lim
x→∞

1 +
√
x+ 3
√
x

1 + 3
√
x+ 4
√
x
=?

3.3.20. (3)

(a) lim
x→∞

sin ex

x
=? (b) lim

x→∞
x+ sinx√
x2 + 1

=?
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3.3.21. (3)
Calculate the limit at the given α of the following functions.

1. f(x) = [x], α = 2 + 0; 2. f(x) = {x}, α = 2 + 0;

3. f(x) =
x

2x− 1
, α =∞; 4. f(x) =

x

2x− 1
, α =

1

2
+ 0;

5. f(x) =
x

x2 − 1
, α =∞; 6. f(x) =

x

x2 − 1
, α = 1− 0.

7. f(x) =
√
x+ 1−√x, α =∞; 8.

√
x+ 3
√
x

x−√x , α =∞;

9.
x2 + 5x+ 6

x2 + 6x+ 5
, α =∞; 10. 2−[1/x], α =∞;

11. 3
√
x3 + 1− x, α =∞, 12. x{ 1x}, α = 0,

13. x[ 1x ], α = 0,

3.3.22. (3)

lim
x→2

√
x+ 2− 2

3
√
x+ 25− 3

=?

3.3.23. (3)
Calculate the following limits:

1. lim
x→7

√
x+ 2− 3

√
x+ 20

4
√
x+ 9− 2

2. lim
x→1

359
√
x− 1

5
√
x− 1

3. lim
x→∞

x ·
[√

x2 + 2x− 2
√

x2 + x+ x
]

4. lim
x→∞

x3/2 ·
[√
x+ 2 +

√
x− 2

√
x+ 1

]

5. lim
x→1

(1− x)(1−√x)(1− 3
√
x) · · · (1− n

√
x)

(1− x)n

6. lim
x→∞

x+ sin(x)

3.3.24. (3)
Prove that

lim
x→− d

c+

ax+ b

cx+ d
=

{

∞ if bc− ad > 0

−∞ if bc− ad < 0,
,
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lim
x→− d

c−

ax+ b

cx+ d
=

{

−∞ if bc− ad > 0

∞ if bc− ad < 0,

and

lim
x→±∞

ax+ b

cx+ d
=
a

c
, (c 6= 0).

3.3.25. (3)

lim
x→1

x
√
2 − 1

xπ − 1
=? lim

x→7

√
x+ 2− 3

√
x+ 20

4
√
x+ 9− 2

=?

3.3.26. (4)
Let a > 1 and k > 0. Prove that lim

x→∞
a
√
x

xk
=∞.

3.3.27. (4)

lim
x→∞

√
4x + x3 − 2x

(3/5)x
=?

3.3.28. (5)

lim
x→1

(
n

xn − 1
− m

xm − 1

)

=?

3.3.29. (5)

lim
x→1

x100 − 2x+ 1

x50 − 2x+ 1
=?

3.4 Continuous Functions on a Closed Bounded

Interval

3.4.1. (3)
Let f : R → R be continuous and periodic. Does it imply that

f(x) is bounded?

3.4.2. (3)
(Brouwer fixed-point theorem; 1-dimensional case.) All f :

[a, b] → [a, b] continuous functions have a fixed point, i.e., an x, for which
f(x) = x.

Solution→
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3.4.3. (3)
Let f : [0, 1] → [0, 1] and g : [0, 1] → [0, 1] be continuous and

f(0) ≥ g(0), f(1) ≤ g(1). Prove that there exists an x ∈ [0, 1], such that
f(x) = g(x).

3.4.4. (4)
Let f : [0, 2] → R be continuous, f(0) = f(2). Prove that the

graph of f has a chord of length 1.

3.4.5. (5)
Prove that if I is an interval (closed or not, bounded or not, might

be a point) and f : I → R is continuous, then f(I) is also an interval.

3.4.6. (4)
Prove that every polynomial of odd degree has a real root.

3.4.7. (4)
Prove that the polynomial x3 − 3x2 − x+ 2 has 3 real roots.

Solution→

3.4.8. (6)
Prove that the continuous image of a compact set is compact.

3.4.9. (4)
Prove that if f : [a, b]→ R is continuous and x1, x2, . . . , xn ∈ [a, b],

then there is a c ∈ [a, b], for which f(c) =
f(x1) + · · ·+ f(xn)

n
.

3.5 Uniformly Continuous Functions

3.5.1. (4)
Are the following functions uniformly continuous?

a) x2 on (1, 2),

b) sinx on R,

c) sin 1
x on(0,∞),

d) 1/x on (0, 2),

e)
√
x on (0,∞).

3.5.2. (4)
f, g : R → R are uniformly continuous. Does it imply that f · g

is also uniformly continuous?

3.5.3. (4)
Prove that if f : R → R is uniformly continuous on R, then the

function f(x+ 5)− f(x) is bounded.

3.5.4. (5)
Let f : [0, 1) → R be continuous. Prove that f is uniformly

continuous if and only if lim
1−0

f exists and is finite.
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3.5.5. (8)
Let K ⊂ R. Prove that if all continuous K → R functions are

uniformly continuous, then K is compact.

3.6 Monotonity and Continuity

3.6.1. (2)
Prove that if I is an interval and f : I → R is continuous and

injective, then it is strictly monotone.

3.6.2. (8)
Is it true that if for the function f : R → R we have ∀x ∈

R f(x− 0) ≤ f(x) ≤ f(x+ 0), then f is monotone increasing?

3.7 Convexity and Continuity

3.7.1. (5)
Prove that if f : [a, b]→ R is convex, then lim

a+0
f and lim

b−0
f exist

and are finite, moreover lim
a+0

f ≤ f(a) and lim
b−0

f ≤ f(b).

3.7.2. (4)
Is it true that if f : R → R is concave, then lim

−∞
f < ∞ or

lim
∞
f <∞?

3.7.3. (4)
Is it true that if f : R → R is convex and lim

−∞
f = −∞, then

lim
∞
f =∞?

3.7.4. (6)
Prove that if f is weakly convex, then

f

(
x1 + . . .+ xn

n

)

≤ f(x1) + . . .+ f(xn)

n
.

3.7.5. (4)
Is it true that if f : R→ R is concave and lim

−∞
f is finite, then f

is monotone decreasing?

3.7.6. (4)
Prove that if f : R→ R is additive, then f2 is weakly convex.

3.7.7. (4)
Prove that if f : R → R is strictly monotone increasing and

convex, then f−1 is concave on the interval (inf f, sup f).
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3.8 Exponential, Logarithm, and Power Func-

tions

3.8.1. (7)
Prove that if f : R → (0,∞) is continuous and for all x, y ∈ R

the equality f(x+y) = f(x) ·f(y) holds, then f is an exponential function.

3.8.2. (1)
Which one is greater? 5log7 3 or 3log7 5?

3.8.3. (5)
Suppose that ϕ > 0, and logϕ is convex. Prove that ϕ is convex

and show that the reverse implication does not hold.

3.8.4. (3)
Prove that lim

x→∞
log x

x
= 0 and lim

x→+0
x · log x = 0.

3.8.5. (4)

lim
x→+0

xx =? lim
x→+∞

x
√
x =?

3.8.6. (7)
Prove that for the reals 0 < a < b the equality ab = ba holds

if and only if there is a positive number x for which a =
(
1 + 1

x

)x
and

b =
(
1 + 1

x

)x+1
.

3.8.7. (6)

lim
x→+0

(

1 +
1

x

)x

=?

3.8.8. (6)
Prove that if 0 < x, x 6= 1, then log x < x− 1.

3.8.9. (6)
Prove that if 0 < x < 1, then log(x) > 1− 1

x
.

3.8.10. (7)
Find reals a, b such that for all |x| < 1

2 we have 1 + x + ax2 <
ex < 1 + x+ bx2.

3.8.11. (7)
Find reals a, b such that for all |x| < 1

2 we have x + ax2 <
log(1 + x) < x+ bx2.

3.8.12. (5)

lim
x→−0

(

1 +
1

x

)x

=?
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3.8.13. (4)
Prove that if x > 0, n ∈ N, then

ex > 1 +
n∑

k=1

xk

k!
.

3.8.14. (4)

lim
x→∞

x2 −
√
x3 + 1

3
√
x6 + 2− x

=?

3.8.15. (4)

lim
x→∞

√
2x + 3x + 4x

(

1 +
1

x

)x2 =?

3.8.16. (4)

lim
x→+0

elog x/(log | log x|) =?

3.8.17. (5)
Prove that log(n+ 1) < 1 +

1

2
+

1

3
+ . . .+

1

n
≤ (log n) + 1.

3.9 Trigonometric Functions and their Inverses

3.9.1. (5)
(a) Prove that for x 6= kπ we have

cosx+ cos 3x+ cos 5x+ . . .+ cos(2n− 1)x =
sin 2nx

2 sinx
.

(b)
sinx+ sin 2x+ sin 3x+ . . .+ sinnx =?

3.9.2. (5)
Prove that for all non-negative integer n there are polynomials

Tn(x) and Un(x) of degree n, such that

Tn(cos t) = cosnt, and Un(cos t) =
sin(n+ 1)t

sin t
,

and

Tn+1(x) = 2xTn(x)− Tn−1(x) and Un+1(x) = 2xUn(x)− Un−1(x)

(the so-called Chebishev polynomials.)
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3.9.3. (6)
(a) Express sinx and cosx using only tanx.

(b) Express sinx and cosx using only tan x
2 .

(c) Express sinx and cosx using only cot x2 .





Chapter 4

Differential Calculus and

its Applications

4.1 The Notion of Differentiation

4.1.1. (2)
Assume that f : (a, b) → R is differentiable, limx→b f(x) = ∞.

Does it imply that limx→b f
′(x) = ∞?

4.1.2. (2)
(

sin

(
sinx√
x

))′

=?

4.1.3. (3)

a) (xx)′ =? b)
(
(sinx)cos x

)′
=?

4.1.4. (3)
Where is the function

f(x) =

{

x2 if x ∈ Q

−x2 if x 6∈ Q

differentiable?

4.1.5. (2)
Let f : R → R be differentiable, limx→∞ f = 1. Does it imply

that limx→∞ f ′ = 0? And if we also know that limx→∞ f ′ exists?

71
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4.1.6. (3)
Where is the function

(
{x} − 1

2

)2
differentiable?

4.1.7. (3)
Where is the function f(x) =

x

|x|+ 1
differentiable? What is the

derivative?

4.1.8. (3)
Let f(x) = x2 if x ≤ 1 and f(x) = ax + b if x > 1. For which

values of a and b will f be differentiable?

4.1.9. (4)
Let f(x) = x · (x+1) · · · (x+100), and let g = f ◦f ◦f. Calculate

g′(0).

4.1.10. (3)
Prove that the function f(x) =

√
x is differentiable for all a > 0

and f ′(a) = 1/(2
√
a).

4.1.11. (3)
Assume that f : R→ R is differentiable everywhere. Prove that

if f is even, then f ′ is odd and vice versa.

4.1.12. (7)
Let [a, a+ δ) ⊂ D(f). Put the following quantities in increasing

order:

f ′+(a) f ′+(a) lim
a+0

f ′ lim
a+0

f ′ lim
a+0

f ′ lim
a+0

f ′

4.1.13. (2)
Calculate the derivative:

−x; 3x3 − 2x+ 1;
x2 + 1

x3 + 2
; (x10 + x2 + 1)100;

(x3 + 1)n

(2 + x)

(

x3 +
2

x2

)

4.1.14. (2)

Calculate the derivative:

(x2 + 1)4(2− x)8
x3 + 2

·
1 +

1

1 + x
2− x
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4.1.15. (3)

Calculate the derivative:

sinx2 etan x log3(cot
2 x) arc tan(x2 + 1)

sin
(

ar cosh
(
arc cos(log5 x)

))

4.1.16. (2)
The following functions are derivatives. For which functions?

1 + x+ x2; x+
1

x
;

x2

(x3 + 1)2

4.1.17. (3)
8x+cosx is strictly monotone increasing. What is the derivative

of its inverse in 1?

4.1.18. (10)
Does there exists a monotone R → R function which is not

differentiable at any point?

4.1.19. (4)
Let f(x) = x2 · sin(1/x), f(0) = 0. Prove that f is differentiable

everywhere.

4.1.20. (4)
Prove that xx is differentiable for all x > 0. Calculate the

derivative!

4.1.21. (3)
xx is strictly monotone increasing in [1,∞). What is the derivative

of its inverse in 27?

4.1.22. (3)
x5 + x2 is strictly monotone increasing in [1,∞). What is the

derivative of its inverse in 2?

4.1.23. (3)
Prove that x + sinx is strictly monotone increasing in [1,∞).

What is the derivative of its inverse in 1 + (π/2)?

4.1.24. (4)
Find a function f(x) for which f ′(0) = 0, and not differentiable

at any other points.

4.1.25. (6)
Prove that if f ′(x) ≥ 1

100 , then lim
x→∞

f(x) =∞.

4.1.26. (4)
Prove that if f ′(x) = x2 for all x, then there is a constant c such

that f(x) = (x3/3) + c.
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4.1.27. (5)
Prove that if f ′(x) = f(x) for all x, then there is a constant c,

such that f(x) = c · ex.

4.1.28. (4)
Prove that if f(a) = g(a) and for x > a we have f ′(x) ≥ g′(x),

then f(x) ≥ g(x) for all x > a.

4.1.29. (3)
Calculate the derivative of the following functions.

x3; 2x; log1/2 x;
1√
x
; ex + 3 log x x23x

sinx

x
x3ex cosx; x3 ·

(
1

2

)x

;
x2 · log x · 3x · cosx√

x− 3 sin x
x3

.

4.1.30. (3)
What is the derivative of the inverse function of x5 + x3 at the

point −2?

4.1.31. (4)
Find a function f such that lim

x→∞
f ′(x) = 0, but lim

x→∞
f(x) 6= 0.

4.1.32. (4)
Assume that 1. x · f(x), 2. f(x3), 3. f3(x)

is differentiable at 0. Does it imply that f(x) is differentiable at 0?

4.1.33. (3)
Prove that if f(a) = g(a) and f(x) ≤ g(x) in a neighborhood of

a, then f ′(a) = g′(a).

4.1.34. (5)
Calculate the derivative of the Chebishev polynomials at 1:

T ′
n(1) =? U ′

n(1) =?

4.1.35. (3)
Calculate the derivative of the following functions.

x2ex
2+cos x2

logcoth2 x+1 cot
5tan x

coshx

2log x/2

x
+ ar cothx

3
√
x+ 5
√
x

tanx

x2 + 1
·

√
x · 10x

log3 x+ x cotx

(x+ 1)(x2 + xe) cosx



4.1. The Notion of Differentiation 75

4.1.36. (4)
Let

f(x) =

{

x+ 2x2 · sin 1
x if x 6= 0,

0 if x = 0.

Show that f ′(0) > 1, but f is not monotone increasing in any neighborhood
of 0.

4.1.37. (3)
(
f(x)g(x)

)′
=?

(
logf(x) g(x)

)′
=?

4.1.38. (2)
Calculate the derivative of both sides of the identity

1 + x+ x2 + . . .+ xn =
1− xn+1

1− x (x 6= 1).

4.1.39. (5)
Is there a function f : R→ R such that f ′(x) =∞ for all x?

4.1.40. (6)
Find an everywhere differentiable function with a non-continuous

derivative!
Check the Darboux theorem for the derivative!

4.1.41. (5)

Is it true that if f is continuous in a and limx→a f
′(x) =∞, then f ′(a) =∞

?

4.1.42. ()
Assume that f : (a, b) → R is differentiable and limb f(x) = ∞.

Does it imply that limb f
′(x) = ∞?

4.1.43. (3)

Calculate the derivative!
1. sin

(
sin x√
x

)
, 2. xx, 3. (sinx)cos x.

4.1.44. (4)
Suppose that f is differentiable and |f ′| < K. Then f is uniformly

continuous.

4.1.45. (4)

Prove that the graph of the function

f(x) =

{

xx if x > 0

0 if x = 0

is tangent to the y-axis.
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4.1.46. (5)
∞∑

n=1

n3

3n
=?

4.1.47. (5)
Prove that if f is differentiable at a, then

lim
h→0

f(a+ h)− f(a− h)
2h

= f ′(a).

Show that the statement cannot be reversed.

4.1.1 Tangency

4.1.48. (3)
In what angle do the graphs of the functions sin and cos inter-

sect?

4.1.49. (4)
Does the function 3

√
sinx have a vertical tangent line?

4.1.50. (4)
Prove that the line y = mx + b is tangent to the graph of x2 if

and only if they intersect in one point.

4.1.51. (3)
Which horizontal line is tangent to the graph of 2x3− 3x2+8?

4.1.52. (4)
At which point is the x-axis tangent to the graph of x3+px+q?

4.1.53. (3)
At what angle does the line y = 2x intersect the graph of x2?

4.1.54. (5)
Prove that the graphs of

√

4a(a− x) and
√

4b(b+ x) intersect
each other perpendicularly.

4.1.55. (6)
Prove that the graphs of x2 − y2 = a and xy = b intersect each

other perpendicularly.

4.1.56. (6)
Prove that the graphs of ax = x2+ y2 and by = x2+ y2 intersect

each other perpendicularly.

4.1.57. (6)
Prove that the graphs of x3 − 3xy2 = a and y3 − 3x2y = b

intersect each other perpendicularly.

4.1.58. (4)
At what angle do the graphs of 2x and (π − e)x intersect?
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4.2 Higher Order Derivatives

4.2.1. (5)
Is it true that if f ′′′(x) = f(x) for all x ∈ R, then f(x) = c · ex

for some c ∈ R?

4.2.2. (4)
Is it true that if f is 7 times differentiable on R, limx→−∞ f(x) = 5

and limx→∞ f(x) = 3, then f has an inflection point?

4.2.3. (6)
Is it true that if f is 2 times differentiable at a, then

lim
h→0

f(a+ 2h)− 2f(a+ h) + f(a)

h2
= f ′′(a) ?

4.2.4. (6)
Find a differentiable function f which is equal to 2x for x ≤ 0,

and equal to 3x for x ≥ 1. Is there a 2 times differentiable function? And a
271 times differentiable function?

4.2.5. (5)
Calculate all derivatives of

f(x) =
ax+ b

cx+ d
.

4.2.6. (2)
Let f(x) = C1 cosx+ C2 sinx. f

′′(x) + f(x) =?

4.2.7. (2)
Calculate the following derivatives:

1.
(
e(x

3)
)
(60)(0), 2.

(
ex

4)(102)
(0), 3.

(
ex

4)(100)
(0).

4.2.8. (5)
Assume that f ∈ C∞(0,∞), lim0+0 f = lim∞ f = 0. Prove that

∃ξ > 0: f
′′
(ξ) = 0.

4.2.9. (3)
How many times is the function |x|3 differentiable at 0?

4.2.10. (4)
Find a function which is k times differentiable at 0 but not k+1

times.

4.2.11. (4)
How many times is the function |x|α differentiable at 0 if α > 0?

4.2.12. (5)
Assume that f and g are n times differentiable at the point a.

(a) Prove that fg is also n times differentiable at the point a.

(b) (fg)(n)(a) =?
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4.2.13. (5)
Prove that

(1− x2)T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0.

4.3 Local Properties and the Derivative

4.3.1. (5)
(a) Prove that if f is convex, then the left and right derivatives

exist at every point.

(b) Prove that if f is convex, then f ′+ is monotone increasing.

4.3.2. (2)
Let D(f) = [0, 1], f(x) = x7(1− x)9. What are the zeroes of f ′?

What is the minimum and maximum of f?

4.3.3. (6)
Prove that if a ∈ (−1, 1) is a local extremum of the Chebishev

polynomial of second type Un (Un(cos t) =
sin(n+ 1)t

sin t
), then

|Un(a)| =
n+ 1

√

(n+ 1)2(1− a2) + a2
.

4.3.4. (4)
Let

f(x) =

{

x4 ·
(
2 + sin 1

x

)
if x 6= 0

0 if x = 0.

Show that f has a strict local maximum at 0, but f ′ does not change its sign
at 0.

4.4 Mean Value Theorems

4.4.1. (4)
Using the Lagrange mean value theorem prove that if f is differ-

entiable on R and f ′ is bounded, then f is Lipschitz.

4.4.2. (5)
Using the Lagrange mean value theorem prove that if f ′(a + 0)

exists, then f ′+(a) also exists and they are equal.
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4.4.3. (9)
Let a1 < a2 < . . . < an and b1 < b2 < . . . < bn be real numbers.

Show that

det








ea1b1 ea1b2 . . . ea1bn

ea2b1 ea2b2 . . . ea2bn

...
...

. . .
...

eanb1 eanb2 . . . eanbn







> 0.

(KöMaL A. 463., October 2008)

Solution→

4.4.1 Number of Roots

4.4.4. (3)
Prove that the function x5 − 5x+ 2 has 3 real roots.

4.4.5. (3)
Prove that the function x7 + 8x2 + 5x − 23 has at most 3 real

roots.

4.4.6. (5)
At most how many real roots does the function x16 + ax + b

have?

4.4.7. (4)
For which values of k does the function x3 − 6x2 + 9x+ k have

exactly one real root?

4.4.8. (8)
At most how many real roots does the function ex+ p(x) have if

p is a polynomial of degree n?

4.5 Exercises for Extremal Values

4.5.1. (2)
Which of the right circular cones inscribed into the unit sphere

has the greatest volume?

4.5.2. (2)
Calculate the extremal values of the following functions on the

given interval!
1. x2 − x4; [−2, 2]; 2. x− arc tanx; [−1, 1]; 3. x+ e−x; [−1, 1];

4. x+ x−2; [1/10, 10]; 5. arc tan(1/x); [1/10, 10]; 6. cosx2; [0, π];

7. sin(sinx); [−π/2, π/2]; 8. x · e−x; [−2, 2]; 9. xn · e−x; [−2n, 2n];
10. x−log x; [1/2, 2]; 11. 1/(1+sin2 x), (0, π); 12.

√
1− e−x2 ; [−2, 2];

13. x · sin(log x); [1, 100]; 14. xx; (0,∞); 15. x
√
x; (0,∞);

16. (log x)/x; (0,∞); 17. x · log x; (0,∞); 18. xx ·(1−x)1−x; (0, 1).
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4.5.1 Inequalities, Estimates

4.5.3. (4)
Prove that

sinx+ sin y

2
≤ sin

x+ y

2
(x, y ∈ [0, π]) !

4.5.4. (4)
Prove that on the interval (0, π/2) we have tanx > x+ x3

3 .

4.5.5. (6)
Prove that for all x > 0 we have

x

1 + x
< log(1 + x) < x.

4.5.6. (4)
Prove that for all x ∈ [0, 1] we have

1. 2x ≤ 1 + x ≤ ex, 2. 2
πx ≤ sinx ≤ x.

4.5.7. (4)
Prove that | arc tanx− arc tan y| ≤ |x− y| for all x, y.

4.5.8. (5)
Let x < 0 and n positive integer. Which one is the greater? ex

or 1 +
x

1!
+
x2

2!
+ . . .+

xn

n!
?

4.5.9. (9)
Prove that if a > 1 and 0 < x < π

a , then
sin ax

sinx
< ae−

a2−1
6 x2

.

4.5.10. (9)
Prove that for all positive integer n and x > 0 we have

(
n

0

)

√
x
−

(
n

1

)

√
x+ 1

+

(
n

2

)

√
x+ 2

−

(
n

3

)

√
x+ 3

+− . . .+ (−1)n

(
n

n

)

√
x+ n

> 0.

4.5.11. (4)
Prove that cosx ≥ 1− x2

2
.

4.5.12. (5)
Prove that

cosx < e−x
2/2,

if 0 < x < π
2 .

4.5.13. (7)
Let |x| < π

2
. Which one is greater,

sinx

x
or e−x

2/2?
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4.5.14. (4)
What is the range of the function x 7→ ex

x
(x ∈ R \ {0}?

4.5.15. (10)
Let p(x) = xn + an−1x

n−1 + . . . + a1x + a0 be a polynomial
with real coefficients and n ≥ 2, and suppose that the polynomial (x− 1)k+1

divides p(x) with some positive integer k. Prove that

n−1∑

ℓ=0

|aℓ| > 1 +
2k2

n
.

CIIM 4, Guanajuato, Mexico, 2012

Solution→

4.5.16. (5)
Let 0 < x, y < π. Which one is greater: sin

√
xy, or

√
sinx · sin y?

4.6 Analysis of Differentiable Functions

4.6.1. (4)
Analyze the following functions!

1. e−1/x2

, 2. xx (without convexity), 3. x+e−x, 4. sin(sinx),

5. 3x− x3, 6. 2−x2

1+x4 , 7. log(1 + x2), 8. x3 − 3x, 9. x2 − x4,
10. x − arc tanx, 11. x + e−x, 12. x + x−2, 13. arc tan(1/x),
14. cosx2, 15. sin(sinx), 16. sin(1/x), 17. x · e−x, 18. x− log x.

4.6.2. (4)
Analyze the following functions!

1. 1/(1 + sin2 x), 2.
(
1 + 1

x

)x
, 3.

(
1 + 1

x

)x+1
, 4.

√
1− e−x2 , 5. xx,

6. x
√
x, 7. (log x)/x, 8. x · log x, 9. xx ·(1−x)1−x, 10. arc tanx− 1

2 log(1+
x2), 11. arc tanx− x

x+1 , 12. x4/(1+x)3, 13. ex/(1+x), 14. ex/ sinhx,

15. e−x ·
[
1− x2

2
sinx− (1 + x)2

2
cosx

]

.

4.6.3. (4)
Analyze the following function:

a)
2− x2
1 + x4

b) log(1 + x2).

4.6.4. (4)
Let f(x) = xn · e−x. f

(
(0,∞)

)
=?

4.6.5. (4)
Analyze the following function:

ex

1− x2 .
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4.6.6. (4)
Analyze the following function: π

4x− arc tanx.

4.6.1 Convexity

4.6.7. (3)
Suppose that f : R → R is convex, f(5) = 12 and α =

limx→∞ f(x). What are the possible values of α?

4.6.8. (6)
In how many points can the graphs of two convex functions

intersect? And a convex and a concave?

4.6.9. (4)
Find the maximal intervals for which the following functions are

convex or concave.
1. ex, 2. log x, 3. |x|, 4. xa (a ∈ R), 5. ax (a > 0)

6. sinx.

4.6.10. (5)
f : (a, b)→ R is convex, ψ : f(a, b)→ R is convex and monotone

increasing. Prove that in this case ψ ◦ f is also convex.

4.6.11. (4)
Is it true that the inverse of a convex function is concave?

4.7 The L’Hospital Rule

4.7.1. (3)

lim
x→0

cos(x2)− 1

x
=?

4.7.2. (3)

lim
x→0

cos(xex)− cos(xe−x)

x3
=?

4.7.3. (3)
Calculate the following limits using L’Hospital’s rule!

1. lim
x→π/2

cosx
π
2 − x

, 2. lim
x→0+

x
√
x.
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4.7.4. (3)
Calculate the following limits using L’Hospital’s rule and also

using the Taylor polynomial!

1. lim
x→0

sinx− x
x3

, 2. lim
x→0

cos(x2)− 1

x
, 3. lim

x→0

cos(xex)− cos(xe−x)

x3
,

4. lim
x=∞

1 +
√
x+ 3
√
x

1 + 3
√
x+ 4
√
x
, 5. lim

x→0

(1 + x)5 − (1 + 5x)

x2 + x5
, 6. lim

x→0

cosx− e− x2

2

x4
,

7. lim
x→0

ex sinx− x(1 + x)

x3
.

4.7.5. (2)
Calculate the following limits using some known derivatives.

lim
x→0

cos3 x+ ex − 2

x
lim
x→0

sinhx

log2(1 + x)

4.7.6. (3)

lim
x→0

sin 3x

tan 5x
=? lim

x→0

log cos ax

log cosh bx
=? lim

x→0

(
sinx

x

)x−2

=?

lim
x→1

(

(x− 1) tan
πx

2

)

=? lim
x→∞

sin log x

x
=?

Can we use the L’Hospital rule? Can we use the definition of the derivative
at 0 (or 1)?

4.7.7. (3)

lim
x→0

2ex + e−x − 3

sin 2x+ x2 + sinhx
=? lim

x→1
x

1
1−x =?

lim
x→1

(2− x)tan πx
2 =? lim

x→∞
2x+ sinx

2x− cosx
=?

Can we use the L’Hospital rule? Can we use the definition of the derivative
at 0 (or 1)?

4.7.8. (4)
Can we use the L’Hospital rule for 0

anything type limits?

4.7.9. (4)
Assume that f, g are k times differentiable, lim

∞
|g| =∞, g(k) 6= 0

and lim
∞

f(k)

g(k) = β. Does it imply that lim
∞

f
g = β?
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4.7.10. (4)

lim
x→0

log(1−x2)(cos bx) =? lim
x→0

(
1 + ex

1 + cosx

)cot x

=?

lim
x→0

2 coth(x2)− cot(1− cosx)

log(1 + x)− sinx
=?

4.7.11. (4)

lim
x→1

(x− 1)logx 2 =? lim
x→0

(coshx)
cot2 x

=?

4.7.12. (5)

lim
x→0

cotx− 1

x
3x − coshx

=?

4.7.13. (5)

lim
x→0

(
1

sinx
− 1

ex − 1

)

=?

4.7.14. (5)

lim
x→0

cothx− cotx

log(1 + x)− x =?

4.8 Polynomial Approximation, Taylor Poly-

nomial

4.8.1. (4)
Calculate the Taylor expansion of arc tan.

4.8.2. (3)
Calculate the Taylor expansion of ex and e(x

2).

4.8.3. (2)
Write the polynomial 1 + 3x + 5x2 − 2x3 as linear combination

of powers of x+ 1.

4.8.4. (4)

lim
x→0

cosx− e− x2

2

x4
=?
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4.8.5. (4)

lim
x→0

ex sinx− x(1 + x)

x3
=?

4.8.6. (2)
Calculate the degree 5 Taylor polynomial of log(cosx).

4.8.7. (5)
A =?, B =? if cotx = 1+Ax2

x+Bx3 + o(x4).

cotx− 1/x = (A−B)x
1+Bx2 + o(?)

4.8.8. (4)
Calculate the Taylor expansion at 0.

a)
1

1− x b)
1

1 + x
c)

1

1 + 2x
d)

1

3 + 4x
e)

1

2 + x2

f)
1√
1 + x

4.8.9. (3)
Calculate the degree 3 Taylor polynomial at 0:

(1 + x)100

(1− 2x)40(1 + 2x)60

4.8.10. (3)
Calculate the degree 3 Taylor polynomial at 0 for sin(sinx).

4.8.11. (3)
What is the leading term of (1 + x)x − 1?

4.8.12. (6)
Prove that limn

(
e−

(
1 + 1

n

)n)
= e

2 .

4.8.13. (3)
Calculate the degree 0, 1, 2, 3, 4 and 5 Taylor polynomial at 1 for

x3!

4.8.14. (6)
Prove that e is irrational!

4.8.15. (5)
Calculate the Taylor expansion (at 0 if not specified):

1. sinx; 2. cosx; 3. arc tanx; 4. arcsinx; 5. 1
1−x2 ;

6. 1
1+x2 ; 7. ex; 8. ex

2

; 9. x3e−x
2

; 10. 1/x, a = 1;

11. sin2 x; 12. arc sinx.
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4.8.16. (4)
For which values of a, b ∈ R does the following identity hold

(
a+ b

k

)

=

k∑

i=0

(
a

i

)(
b

k − i

)

?

4.8.17. (2)
Prove the binomial theorem using the binomial expansion!

4.8.18. (1)
Prove that

(−1/2
k

)

=
(−1)k
4k

(
2k

k

)

.

4.8.19. (5)
Prove that for x > 0

x

1!
− x3

3!
+
x5

5!
+− . . .− x4n+3

(4n+ 3)!
< sinx <

x

1!
− x3

3!
+
x5

5!
+− . . .− x4n+1

(4n+ 1)!

and

1− x
2

2!
+
x4

4!
− x

6

6!
+− . . .− x4n+2

(4n+ 2)!
< cosx < 1− x

2

2!
+
x4

4!
− x

6

6!
+− . . .+ x4n

(4n)!
.

4.8.20. (6)
Prove that lim

n→∞

n∑

k=0

xk

k!
= ex for all x ∈ R.
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The Riemann Integral and

its Applications

5.0.1 The Indefinite Integral

5.0.1. (1)

∫
dx

x+ 5
=?

∫

3
√
1− 3x dx =?

∫

(e−x + e−2x+3) dx =?

5.0.2. (2)

∫
dx

5 + 4x2
=?

∫ (1− x
x

)2

dx =?

∫ (

1− 1

x2

)√

x
√
x dx =?

5.0.3. (3)

∫

xe−x dx =?

∫

x2 log x dx =?

∫

tanh2 x dx =?

5.0.4. (4)

∫
√

1− t2 dt =?

∫
√

1 + x2 dx =?

∫
dx

sinx
=?
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5.0.5. (5)

∫

|x| dx =?

∫

|x2 − 1| dx =?

∫ √
1 + x2 +

√
1− x2√

1− x4
dx =?

5.0.6. (4)
∫

4x5 − 5x4 + 16x3 − 19x2 + 12x− 16

(x− 2)2(x4 + 4x2 + 4)
dx =?

5.0.7. (4)
∫
x5 + 4x4 + 12x3 + 14x2 + 15x+ 12

(x+ 2)(x2 + 3)
dx =?

5.0.8. (4)
∫

x2√
1 + x+ x2

dx =?

5.0.9. (5)
∫
√

x3 + x4 dx =?

5.0.10. (5)
∫
x−
√
x2 + 3x+ 2

x+
√
x2 + 3x+ 2

dx =?

5.0.11. (5)
∫

sinx · log(tanx) dx =?

5.0.12. (4)
∫

dx

1 +
√
1− 2x− x2

=?

5.0.13. (4)
a, b ∈ R. ∫

dx

a sinx+ b cosx
=?
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5.0.2 Properties of the Derivative

5.0.14. (5)
Find a non-continuous function with an antiderivative.

5.0.15. (4)
Which of the following statements are true for any function

f : [a, b]→ R?

(a) If f is bounded, then it is Riemann-integrable.

(b) If f is bounded, then it has an antiderivative.

(c) If f has an antiderivative, then it is Riemann-integrable.

(d) If f has an antiderivative, then it is not Riemann-integrable.

(e) If f has an antiderivative, then it is bounded.

(f) f has an antiderivative if and only if its integral-function is an antideriva-
tive.

(g) If f is integrable and its integral-function is differentiable, then the deriva-
tive of the integral-function coincides with f .

(h) If f is monotonically increasing, then its integral-function is convex.

(i) If the integral-function of f is convex, then f is monotonically increasing.

(j) If f satisfies the Intermediate Value Theorem, then it has an antideriva-
tive.

5.1 The Definite Integral

5.1.1. (1)
Use the definition of the Riemann integral to compute the integral

over [0, 1] of the function:

a) x2 b)

{

0 x ≤ 1/2

1 x > 1/2
c) except finitely many points 0

5.1.2. (6)
Let 0 < a < b. Determine from the definition

∫ b

a
xm dx by using

an appropriate partition.

5.1.3. (3)
State the necessary conditions and prove

∣
∣
∣
∣
∣

∫ b

a

f

∣
∣
∣
∣
∣
≤
∫ b

a

|f |.
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5.1.4. (2)
Is the following function Riemann-integrable on [0, 1]?

f(x) =

{

1 if x = 1
n , n = 1, 2, . . .

0 otherwise

5.1.5. (2)
For a given ε find δ for which

δ(F ) < δ ⇒
∣
∣
∣
∣

∫ 10

0

ex dx − sF (ex)
∣
∣
∣
∣
< ε.

5.1.6. (3)
Given ε find δ for which |I − sF | < ε if δ(F ) < δ:

a) sinx on [0, 2π]; b) f(x) =

{

0 x = 1
n , n = 1, 2, 3, . . .

1 otherwise on [0, 1];

c) sinx ∪ {(0, 0)} on [0, 1].

5.1.7. (5)
Is the Riemann function Riemann-integrable on [0, 1]?

5.1.8. (5)
Is the following function Riemann-integrable on [0, 1]?

f(x) :=

{
1√
q x = p

q , (p, q) = 1, q > 0

0 x irrational

5.1.9. (5)
Prove that if lim

∞
f = A, then lim

H→∞

∫ 1

0
f(Hx) dx = A.

5.1.10. (1)
Find the value of

∫ 1

0
f if it exists,

f(x) =

{

1 if x ∈
[

1
22k+1 ,

1
22k

]
, k = 1, 2, . . .

0 otherwise.

5.1.11. (4)
If f is continuous and

∫ 1

0

f(x) dx =

∫ 1

0

xf(x) dx = 0,

then f has at least two different roots in (0, 1).
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5.1.1 Inequalities for the Value of the Integral

5.1.12. (3)
If f is bounded and concave down on [a, b], then

(b− a)f(a) + f(b)

2
≤
∫ b

a

f ≤ (b− a)f
(a+ b

2

)

.

5.1.13. (5)
Assume that f : [0,∞)→ R is strictly increasing continuous and

f(0) = 0, lim∞ f =∞. Let g be the inverse function f . Show that

xy ≤
∫ x

0

f +

∫ y

0

g.

5.1.14. (3)
Let p, q > 0 and 1/p+ 1/q = 1. Show that for all x, y ≥ 0

xy ≤ xp

p
+
yq

q
.

5.1.15. (3)
Prove the following:

(a) If f, g : [a, b] → R are integrable, then
(∫ b

a
fg
)2

≤
(∫ b

a
f2
)(∫ b

a
g2
)

(Schwarz inequality).

(b) If f, g : [a, b] → R are integrable and p, q > 0 such that 1
p + 1

q = 1, then
∫ b

a
fg ≤

(∫ b

a
|f |p

)1/p (∫ b

a
|g|q
)1/q

(Hölder inequality).

5.1.16. (5)
Prove that xy ≤ (x+ 1) log(x+ 1)− x+ ey − y − 1 holds for all

pairs x, y of positive numbers.

5.2 Integral Calculus

5.2.1. (4)

a)

∫ 1

0

1

tanx+ 1
dx =? b)

∫ 1

0

x arc tanx dx =?
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5.2.2. (4)
∫ 2π

0

1

2 + cosx
dx =?

5.2.3. (3)
∫ 3

0

x · [x] dx

5.2.4. (6)
∫ 0.2

0.1

log cosh sin x
√

1 + sinh2 sinx dx =?

5.2.5. (5)

lim
0+

∫ sin x

0

√
tan t dt

∫ tan x

0

√
sin t dx

=?

5.2.1 Connection between Integration and Differentia-

tion

5.2.6. (4)

(∫ x4

0

et
3

sin t dt
)′

=?

5.2.7. (5)
Write down the second Taylor polynomial around 0 of the function

f(t) =

∫ −t3−t

t2
ex

2

sin
√
x dx.

5.3 Applications of the Integral Calculus

5.3.1. (4)
Use Euler–Maclaurin summation to find

a)

n∑

k=1

k5; b)

n∑

k=1

k3(n− k)3.
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5.3.2. (4)
How much work is required to elevate a mass from ground level

to height h? To h =∞?

5.3.3. (5)
What curve is traced out by the centroids of the arc on the

logarithmic spiral r = a · emϕ (r = a, ψ = 0)−P as P runs though all points
on the spiral?

5.3.1 Calculating the Arclength

5.3.4. (4)
Find the arclength of the arc on the parabola y = x2 that lies

above [0, a].

5.3.5. (3)
Find the arclength of the curve r(θ) = a+a cos θ, (θ ∈ [π/4, π/4]).

Hint→

5.3.6. (3)
Prove that the logarithmic spiral r = a · ec·ψ (ψ ∈ [0,∞)) has

finite arclength.

5.4 Functions of Bounded Variation

5.4.1. (4)
If γ : [0, 1] → R2 is a continuous curve whose image contains

[0, 1]× [0, 1], can γ be of bounded variation?

Hint→

5.4.2. (6)
Prove that f : [0, 1]→ R is of bounded variation if and only if it

is the sum of two monotonic functions.
Hint→

5.5 The Stieltjes integral

5.5.1. (2)
Let f be continuous, g(x) =







c if x < a+b
2

d if x > a+b
2

e if x = a+b
2

.

∫ b

a

f dg =?

Hint→
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5.5.2. (2)
Let f be continuous.

∫ b

a

f d[x] =?

5.6 The Improper Integral

5.6.1. (6)
Are the following improper integrals convergent? Absolute con-

vergent?

a)

∫ ∞

1

sinx

x2
dx b)

∫ ∞

1

sinx

x
dx c)

∫ ∞

1

sin(x2) dx

5.6.2. (5)
Prove that ∫ ∞

0

xne−x dx = n!.

5.6.3. (2)
Suppose that

∫∞
0
|f | is convergent. Does it follow that lim∞ f =

0?

5.6.4. (5)
Show that if f is uniformly continuous on [2,∞), then

∫ ∞

0

f(x)

x2 log2 x
dx

is convergent.

5.6.5. (3)

lim
0+0

x ·
∫ 1

x

cos t

t2
dt =?

5.6.6. (2)
Is the following integral convergent?

∫ 3

0

cos t

t
dt

Hint→
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5.6.7. (5)
∫ π/2

0

log cosx dx =?

5.6.8. (5)
For what α is

∫ 1

0

(x− sinx)α dx

convergent?

5.6.9. (7)
Is there a continuous function f : R → R for which

∫∞
0
f is

convergent, but
∫∞
0
f2 is divergent?





Chapter 6

Infinite Series

6.0.1. (1)
Show that

1

n+ 1
< log(n+ 1)− log(n) <

1

n
.

6.0.2. (3)
Prove

1

n
≤ 1 +

1

2
+

1

3
+ . . .+

1

n
− log n < 1.

6.0.3. (5)
Prove that

an := 1 +
1

2
+

1

3
+ . . .+

1

n
− log n

is convergent.

6.0.4. (4)

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ . . . =?

6.0.5. (4)

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . . =?
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6.0.6. (4)

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . . =?

6.0.7. (4)

1 +
1

2
− 1

3
+

1

4
+

1

5
− 1

6
+

1

7
+

1

8
− 1

9
+ . . . =?

6.0.8. (5)
Let un :=

∫ 1/n

0

√
x

1+x2 dx. Is the series
∞∑

1
un convergent?

6.0.9. (2)

1

1 · 2 +
1

2 · 3 +
1

3 · 4 +
1

4 · 5 + . . . =?

6.0.10. (4)
∞∑

n=0

(n+ 1)qn =?

6.0.11. (4)
True or false?

(a) If an → 0, then
∞∑

n=1
an is convergent.

(b) If an → 0 and the partial sums
∞∑

n=1
an are bounded, then

∞∑

n=1
an is

convergent.

(c) If
∞∑

n=1
an is convergent, then an → 0.

6.0.12. (4)
Show that if |an| < 1

n2 for all positive integer n, then
∑
an

satisfies the Cauchy criterion.

6.0.13. (8)
Let

n∑

n=1
an be a divergent series with positive terms. Prove that

there is a sequence cn of positive numbers, such that cn → 0 as n→∞ and
n∑

n=1
(cn · an) still diverges.

6.0.14. (4)

1

1 · 2 · 3 +
1

2 · 3 · 4 +
1

3 · 4 · 5 +
1

4 · 5 · 6 + . . . =?
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6.0.15. (5)
∞∑

n=0

n2qn =?

6.0.16. (4)
Assume that an ≤ bn ≤ cn for all positive integer n. Show that

if
∞∑

n=1
an and

∞∑

n=1
cn are convergent, then

∞∑

n=1
bn is also convergent.

6.0.17. (8)
Let

n∑

n=1
an be a convergent series of positive terms. Prove that

there is a sequence (cn) such that cn →∞ as n→∞ and for which
n∑

n=1
(cn·an)

is still convergent.

6.0.18. (8)
For s > 1 let ζ(s) =

∞∑

n=1

1
ns , (p1, p2, p3, . . .) = (2, 3, 5, . . .) be the

sequence of primes in increasing order.

(a) Prove that lim
N→∞

N∏

n=1

1

1− 1
psn

= ζ(s).

(b) Prove that
∞∑

n=1

1
pn

=∞.

(c) What is the order of magnitude of

∞∑

n=1

1

psn
as s→ 1 + 0?

6.0.19. (9)
For all k ∈ N let

∞∑

n=1
a
(k)
n be a divergent series of positive terms.

Prove that there is a sequence (cn) of positive real numbers such that the

series
∞∑

n=1
(cn · a(k)n ) are all divergent.

6.0.20. (3)
Determine whether the following series are convergent or diver-

gent. In case of convergence determine whether convergence is absolute or
conditional.

∞∑

n=1

1

10n+
√
n+ 1

∞∑

n=1

1

n2

∞∑

n=1

(−1)n+1

n

∞∑

n=1

(−1)[n/2]
log(n+ 1)

∞∑

n=1

1

n!

6.0.21. (3)
Determine whether the following series are convergent or diver-

gent.

∑

e−n
2 ∑ n10

3n − 2n

∑ 1
√

n(n+ 1)

∑

n2e−
√
n
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∑(

n1/n
2 − 1

) ∑ n
√
n− 1

log2 n

6.0.22. (5)
Assume that an > 0, bn > 0 for all n and that an/bn → 1. Prove

that
∑
an is convergent if and only if

∑
bn is convergent. Give an example

when this fails if the assumption an > 0, bn > 0 is removed.

6.0.23. (2)
Prove that if

∑
an and

∑
bn are absolutely convergent, then the

following series are also absolutely convergent:
∑

(an + bn)
∑

max(an, bn)
∑√

a2n + b2n

6.0.24. (5)
What are the root test, quotient test, Dirichlet-test, and Abel-test

for improper integrals?

6.0.25. (3)
Determine whether the following series are convergent or diver-

gent. In case of convergence, determine whether the convergence is absolute
or conditional.

∞∑

n=1

(−1)n
n log(n+ 1)

∞∑

n=1

(n!)2

2n2

∞∑

n=1

(−1)n(n!)2
2n2

∞∑

n=1

1
(
2n
n

)

6.0.26. (4)
Determine whether the following series are convergent or diver-

gent.

∑
(

1− 1

n

)n ∑
(

1− 1

n

)n2
∑

(
n− 1

n+ 1

)n
2 logn+n log logn

∑ nn+
1
n

(
n+ 1

n

)n

6.0.27. (5)
(a) Show that if lim

(∣
∣an
∣
∣

1
log n

)

<
1

e
, then

∞∑

n=1

an is absolutely

convergent.

(b) Show that if an ≥ 0 and lim
(∣
∣an
∣
∣

1
log n

)

>
1

e
, then

∞∑

n=1

an is divergent.

(c) Can any conclusions be made about the convergence of
∞∑

n=1

an if an > 0

and lim
(∣
∣an
∣
∣

1
log n

)

=
1

e
?
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6.0.28. (6)
Let

∑
aϕ(n) be a rearrangment of the conditionally convergent

series
∑
an. What can be the set of limit points of the set of the partial sums

n∑

k=1

aϕ(k)?

6.0.29. (7)
Let a1, a2, . . . be a sequence of positive reals such that

∃c > 0 ∀x > 2
∣
∣{k : ak < x}

∣
∣ > c

x

log x
.

(Primes for example satisfy this.) Show that
∑

1
ak

=∞.

6.0.30. (5)
Prove the Condensation lemma: Let a1 ≥ a2 ≥ · · · ≥ an ≥ · · · ≥

0. Then

∞∑

n=1

an convergent ⇐⇒
∞∑

k=1

2ka2k convergent.

Solution→

6.0.31. (6)
Convergent or divergent?

∞∑

n=2

1

n log n

Hint→

6.0.32. (6)
Let ε > 0. Convergent or divergent?

∞∑

n=2

1

n(log n)1+ε

Hint→

6.0.33. (4)
For which c ∈ R is the series

∞∑

n=10

1

n · log n · (log log n)c

convergent?

6.0.34. (5)
Using Dirichlet’s criterion show that

∞∑

n=1

sin(na)

n
converges for

all a ∈ R.
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6.0.35. (5)
True or false?

(1) If
∞∑

n=1
an is convergent, then

∞∑

n=1
( n
√
2 · an) is also convergent.

(2) If
∞∑

n=1
an is divergent, then

∞∑

n=1
( n
√
2 · an) is also divergent.

(3) If
∞∑

n=1
anis convergent, then

∞∑

n=1

an
n

is also convergent.

(4) If
∞∑

n=1
an is divergent, then

∞∑

n=1

an
n

is also divergent.

6.0.36. (5)
Give examples of an absolutely convergent series

∞∑

n=0
an and

conditionally convergent series
∞∑

n=0
bn for which their Cauchy product is con-

ditionally convergent.

6.0.37. (5)
(Raabe criterion) Let

∞∑

n=1
an have positive terms.

(a) Prove that if lim inf n

(
an
an+1

− 1

)

> 1, then the series is convergent.

(b) Prove that if n

(
an
an+1

− 1

)

≤ 1 for n large enough, then the series is

divergent.

6.0.38. (10)
For a sequence A = (a0, a1, a2, . . .) of reals let

SA = (a0, a0 + a1, a0 + a1 + a2, . . .)

be the sequence of its partial sums a0 + a1 + a2 + . . .. Can one find a non-
zero sequence A for which the sequences A, SA, SSA, SSSA, . . . are all
convergent?

Miklós Schweitzer memorial competition, 2007



Chapter 7

Sequences and Series of

Functions

7.1 Convergence of Sequences of Functions

7.1.1. (3)
For which values of x do the following sequences converge? On

which intervals do they converge uniformly?

n
√

|x| xn

n!
xn − xn+1

(

1 +
x

n

)n

7.1.2. (4)
True or false?

(a) A pointwise limit of monotonic functions is monotonic.
(b) A pointwise limit of strictly monotonic functions is strictly monotonic.
(c) A pointwise limit of bounded functions is bounded.
(d) A pointwise limit of continuous functions is continuous.
(e) A pointwise limit of Lipschitz functions is Lipschitz.

7.1.3. (4)
True or false?

(a) A uniform limit of monotonic functions is monotonic.
(b) A uniform limit of strictly monotonic functions is strictly monotonic.
(c) A uniform limit of bounded functions is bounded.
(d) A uniform limit of continuous functions is continuous.
(e) A uniform limit of Lipschitz functions is Lipschitz.

7.1.4. (3)
A sequence of functions f1, f2, . . . : I → R is uniformly bounded

if ∃K ∈ R ∀n ∈ N ∀x ∈ I |fn(x)| < K.
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Prove that the limit of a uniformly bounded sequence of functions is
bounded.

7.1.5. (6)
Prove that ζ(s) is infinitely differentiable on (1,∞).

7.1.6. (5)
True or false? If a sequence of continuous functions fn : [a, b]→ R

uniformly convergent on [a, b]∩Q, then it is uniformly convergent on [a, b].

7.1.7. (9)
True or false? From a sequence of uniformly bounded continuous

functions fn : [a, b]→ R one can select a uniformly convergent subsequence.

7.1.8. (3)
For which values of x do the following sequences converge? On

which intervals do they converge uniformly?

xn

1 + xn
n
√

1 + x2n

√

x2 +
1

n

7.1.9. (4)
True or false?

(a) A pointwise limit of convex functions is convex.
(b) A pointwise limit of strictly convex functions is strictly convex.
(c) A pointwise limit of Riemann-integrable functions is Riemann-integrable.
(d) A pointwise limit of differentiable functions is differentiable.

7.1.10. (4)
True or false?

(a) A uniform limit of convex functions is convex.
(b) A uniform limit of strictly convex functions is strictly convex.
(c) A uniform limit of Riemann-integrable functions is Riemann-integrable.
(d) A uniform limit of differentiable functions is differentiable.

7.1.11. (5)
A sequence of functions f1, f2, . . . : I → R is uniformly Lipschitz

if ∃K ∈ R ∀n ∈ N ∀x, y ∈ I |fn(x)−fn(y)| ≤ K|x−y|. Prove that a pointwise
limit of a sequence of uniformly Lipschitz functions is Lipschitz.

7.1.12. (7)
Prove that a uniformly bounded and uniformly Lipschitz sequence

of functions has a uniformly convergent subsequence.

7.1.13. (7)
Prove that if (fn : H → R) is uniformly convergent on all

countable subsets of H, then it is uniformly convergent on H.

7.1.14. (5)
True or false? If f1, f2, . . . is a sequence of continuous non-negative

functions, then F (x) = inf{f1(x), f2(x), . . . } is also continuous.
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7.1.15. (9)
True or false? If H is a non-empty bounded and closed subset of

C[a, b] and f : H → R is a continuous map, then f has a maximum.

7.1.16. (9)
Is the Baire theorem true for C[a, b]? That is, decide whether

C[a, b] can be presented as a union of countably many nowhere dense sub-
sets.

7.2 Convergence of Series of Functions

7.2.1. (8)
Show that if

∞∑

n=1
fn converges uniformly on the set H after any

rearrangment of the terms, then
∞∑

n=1
|fn| is uniformly convergent.

7.2.2. (4)
For which values is the series

∞∑

n=1

(
x

x2 + 1

)n

convergent? For

which values is it absolutely convergent?

7.2.3. (4)
For which values is the series

∞∑

n=1

1 · 3 . . . (2n− 1)

2 · 4 . . . (2n)

(
2x

x2 + 1

)n

convergent? For which values is it absolutely convergent?

7.2.4. (4)
For which values is the series

∞∑

n=1

5n + 32n

2n
xn(1−x)n convergent?

For which values is it absolutely convergent?

7.2.5. (3)
For which values is the series

∞∑

n=1

xn

1− xn convergent? For which

values is it absolutely convergent?

7.2.6. (3)
For which values is the series

∞∑

n=1

xn

1 + x2n
convergent? For which

values is it absolutely convergent?

7.2.7. (4)
For which values is the series

∞∑

n=1

ne−nx convergent? For which

values is it absolutely convergent?

7.2.8. (4)
For which values is the series

∞∑

n=1

2n cosn x

n2
convergent? For

which values is it absolutely convergent?
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7.2.9. (5)
For which values is the series

∞∑

n=1

[
x(x+ n)

n

]n

convergent? For

which values is it absolutely convergent?

7.2.10. (7)
Prove that if the Laurent series

∞∑

n=−∞
anx

n converges at x = r

and x = R, (0 < r < R) then it converges for all x ∈ [r,R].

7.2.11. (5)
For which x is ∞∑

n=−∞

n

a|n|
xn

convergent? Which is the value of the sum?

7.2.12. (6)
Let (x)n = x(x − 1) . . . (x − (n − 1)). At which points do the

following Newton-type series converge and converge uniformly?

∞∑

n=1

(x)n
n!

;

∞∑

n=1

1

np
(x)n
n!

where p ∈ R.

7.2.13. (6)
Assume that fn(x) are monotonic on [a, b], and that

∞∑

n=1

fn(x)

converges absolutely for x = a and x = b. Show that the series converges
absolutely and uniformly on [a, b].

7.2.14. (7)
Assume that

∞∑

n=1

1

an
converges. Prove that

∞∑

n=1

1

x− an

converges on any closed interval that does not contain any of the an(n =
1, 2, . . .). Is the convergence absolute? Is it uniform?

7.2.15. (7)
Assume that ∞∑

n=1

an
nx

converges for x = x0. Prove that it converges for any x > x0.
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7.2.16. (7)
Construct a series of functions that is both uniformly convergent

and absolutely convergent but not uniformly absolute convergent.

7.2.17. (5)
Give an example of non-negative uniformly convergent series, for

which the Weierstrass criterion is not applicable.

7.3 Taylor and Power Series

7.3.1. (4)
Determine the Taylor series of the function at the given point.

(a)
1

1− x at 0;

(b)
1

x2
at 3;

(c) log x at 5 körül;

(d) sinx at
π

3
;

(e) log(x2 − 1) at 2;
(f) ar sinhx2 at 0;
(g) ar cothx at 2.
Give intervals where the Taylor series converges to the function.

7.3.2. (7)
Construct an infinitely differentiable function f whose Taylor

series around 0 converges everywhere but the limit equals f(x) if and only if
x ∈ [−1, 1].

7.3.3. (3)
Determine the radius of convergence of the following series.

∑

n99xn
∑

(

1 +
1

n

)n2

xn
∑

n!xn
2

7.3.4. (1)
By the binomial theorem (1+x)α =

∞∑

k=0

(
α

k

)

xk if |x| < 1. Which

identities result in the α = −1 and α = −2 cases?

7.3.5. (6)

x

1
− x3

3
+
x5

5
− x7

7
+− . . . =?

∞∑

k=0

(−1)k
4k + 1

=?
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7.3.6. (6)
∞∑

k=0

(
1

3k + 1
− 1

3k + 2

)

=?

7.3.7. (6)
Let c0 = 1 and cn+1 =

n∑

k=0

ckcn−k. (Catalan numbers.) Define

G(x) =
∞∑

n=0
cnx

n the so-called generating function of the Catalan numbers.

(a) Prove that G converges in a neigborhood of 0.
(b) Prove that in the (non-empty) interior of the convergence interval

G(x) = xG2(x) + 1.
(c) Using b) determine G and cn explicitely.

7.3.8. (8)
Let pn be the number of partitions of the number n into different

parts. (For example p0 = 1 and p6 = 4, because 6 = 5+1 = 4+2 = 3+2+1.)

Using the generating series P (x) =
∞∑

n=0
pnx

n find an upper bound for pn.

7.3.9. (5)
Determine the Taylor series of ar tanhx around a = 1/2. For

which x do the series equal the original function?

7.3.10. (6)
∞∑

k=0

(
1

3k + 1
+

1

3k + 2
− 2

3k + 3

)

=?

7.3.11. (5)
(a) For which real values of c will the series

∞∑

n=1

(

nc · cos(nx)
)

converge on R?

(b) For which real values of c will the series
∞∑

n=1

(

nc · sin(nx)
)

converge

uniformly on R?

7.3.12. (2)
For which c ∈ R

∞∑

k=0

(
c

k

)

= 2c?



Chapter 8

Differentiability in Higher

Dimensions

8.1 Real Valued Functions of Several Variables

8.1.1 Topology of the n-dimensional Space

8.1.1. (2)
Find the interior, boundary and closure of the set

A =

{(

x, sin
1

x

)

|x > 0

}

⊂ R2.

8.1.2. (5)
True or false?

• a) A ⊂ B ⇒ intA ⊂ intB;

• b) int intA = intA;

• c) ∂ int A = ∂A;

• d) intA = A;

• e) A = A;

• f) int(A) = intA;

• g) ∂A = ∂A
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8.1.3. (5)
Prove that H is the smallest closed set containing H.

8.1.4. (4)
H = { y | ∃xn ∈ H sequence, for which xn → y }.

8.1.5. (4)
Show that

a) A ∪B = A ∪B;
b) A ∩B ⊂ A ∩B.

8.1.6. (1)
Prove that if p is a limit point of E ⊂ Rd, then all neighborhoods

of p contain infinitely many points of E.

8.1.7. (5)
Show that for all H ⊂ Rd ∂∂H ⊂ ∂H. Give an example when

the inclusion is proper.

8.1.8. (6)
Let x ∈ Rn and let A ⊂ Rn be closed. Prove that there is a ∈ A

for which |x− a| = d(x,A), where

d(x,A) := inf{|x− b| : b ∈ A}

is the distance of x from A.

8.1.9. (6)
Let A ⊂ Rd be closed such that its diameter

diam(A) := sup{|x− y| : x, y ∈ A}

is d. Prove that there are a, b ∈ A whose distance is d.

8.1.10. (1)
Determine the interior, exterior and boundary of the following

sets. What is the boundary of the boundaries?

{
(x, y) ∈ R2 : x, y > 0, x+y < 1

}
;

∞⋃

n=1

{

(x, y) ∈ R2 : x = 1/n, |y| < 1

n

}

8.1.11. (5)
For any subset A of a metric space show that

int intA = intA; int extA = extA.

8.1.12. (6)
Prove that if K is such a subset of a metric space that from all

covers of K by open balls contain a finite subcover, then K is compact.
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8.1.13. (8)
Prove that if K is a compact subset of a metric space, then K is

bounded and closed.

8.1.14. (5)
Is there an A ⊂ R for which ∂A, ∂∂A, ∂∂∂A, . . . are all different?

8.1.15. (5)
Prove that for any A,B subset of a metric space

∂(A ∪B) ⊂ ∂A ∪ ∂B;

∂(A ∩B) ⊂ ∂A ∪ ∂B.
Is it true that

(
∂(A ∪B)

)
∪
(
∂(A ∩B)

)
= ∂A ∪ ∂B?

8.1.16. (6)
(a) Prove that for any subset A of a metric space ∂(intA) ⊂ ∂A

and ∂(extA) ⊂ ∂A.
(b) Is it true that ∂(intA) = ∂(extA)?

8.1.17. (5)
Prove that in a metric space the boundary of any set is closed.

8.1.18. (6)
Prove that if K is a compact subset of a metric space, then all

closed subsets of K are compact.

8.1.19. (1)
Prove that in any metric space the cardinality of open and closed

sets is the same.

8.1.20. (8)
Prove that if in a metric space every bounded, closed set is

compact, then the space is complete.

8.1.21. (9)
(a) Prove that if the Bolzano–Weierstrass theorem is true in a

metric space, then the space is complete.
(b) Give an example for a metric space that is complete but for which the

Bolzano–Weierstrass theorem is not true.

8.1.22. (8)
Prove that Rp has continuum many open (closed) subsets.

8.1.23. (9)
A subset of Rp is “Gδ” if it is the intersection of countably many

open sets. A chain H is a set of subsets of Rp such that from any two sets in
H one is contained by the other. Prove that the intersection of any chain of
open sets is Gδ.

8.1.24. (5)
Collect as many descriptions of open and closed sets as you can.
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8.1.25. (5)
Prove that in Rp every closed interval [a, b] is connected, that is,

if [a, b] ⊂ (A ∪B), then [a, b] ⊂ A or [a, b] ⊂ B.

8.1.26. (6)
Prove that Rp satisfies the Baire category theorem.

8.1.27. (9)
Prove Helly’s theorem:

(a) If F1, . . . , Fn ⊂ Rp are convex, and any (p + 1) among them have a
common point, then the Fi-s have a common point.

(b) If Fi ⊂ Rp (i ∈ I) are convex and compact and any (p + 1) among
them have a common point, then the Fi-s have a common point.

8.1.28. (9)
Show that the unit ball of C[a, b] (with the maximum norm) is

not compact.

8.1.29. (10)
Is it true that the intersection of a chain of Gδ sets is Gδ?

8.1.30. (9)

8.1.2 Limits and Continuity in Rn

8.1.31. (4)
lim(0,0)(x

2 + y2)x
2y2 =?

Answer→
8.1.32. (8)

A norm on Rp is a function ||.|| : Rp → R that satisfies
(a) ||x|| ≥ 0 and ||x|| = 0 if and only x = 0;
(b) ||x+ y|| ≤ ||x||+ ||y||;
(c) ||c · x|| = |c| · ||x|| for all c ∈ R, x ∈ Rn.
Define the following norm on Rp:

||x||α =

(
p
∑

i=1

|xi|α
)1/α

(1 ≤ α <∞); ||x||∞ = max
1≤i≤p

|xi|.

(a) Prove that these are norms.
(b) Why do we need 1 ≤ α?
(c) Prove that for all x ∈ Rp

lim
α→∞

||x||α = ||x||∞.

(d) Show that

∀α, β ∈ [1,∞) ∪ {∞} ∃c1, c2 > 0 ∀x ∈ Rp c1||x||α < ||x||β < c2||x||α.
(e) Prove that any two norms are equivalent if ||.|| and ||.||′ are two norms,

then there are c1, c2 > 0 such that c1||x|| ≤ ||x||′ ≤ c2||x||.
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8.1.33. (1)
Prove that the map (x, y) 7→ x + y is continuous. Find δ for

ε = 10−3 at the point (1, 2).

8.1.34. (3)
For what α ∈ R is

f(x, y) =







xy

(x2 + y2)α
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

continuous at (0, 0)?

8.1.35. (5)
Let A ⊂ Rp and f : A → R. Let B ⊂ Rp be the set of points

where f has a limit at b ∈ B, and let g(b) = lim
x→b, x∈A

f(x). Prove that g is

continuous on B.

8.1.36. (6)
Assume that f : R2 → R and all sections fx=a are continuous and

all sections fy=b are monotonic and continuous. Prove that f is continuous.

8.1.37. (7)
Prove that if K ⊂ Rp and all continuous functions on K are

bounded, then K is compact.

8.1.38. (1)
Prove that (x, y) 7→ xy is continuous. Find δ for ε = 10−3 at the

point (1, 2).

8.1.39. (4)
Find f : R→ R and g : Rp → R for which lim

0

g = 0 and lim
0
f = 0

but lim
0

(f ◦ g) 6= 0.

8.1.40. (5)

lim
(x,y)→(0,0)

cosx+ cos y − 2

x2 + y2
=?

For a given ε find δ.

8.1.41. (3)
Prove that f : Rp → R is continuous if and only if the preimage

of any open set is open.

8.1.42. (5)
Does

sinx− sin y

x− y have a limit at the origin relative to the set

{(x, y) : x 6= y}?
Can this function be extended continuously to the whole plane?

8.1.43. (1)
x0 ∈ Rp. f : Rp → R, x 7→ |x−x0|. Prove that f is continuous.
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8.1.44. (4)
For what a > 0 is

x2y

(x2 + 3y2)a
continuous at the origin?

8.1.45. (3)
Let A ⊂ Rp, A 6= ∅ and define f : Rp → R,

f(x) := inf{ |x− y| | y ∈ A }.

Prove that f is continuous. Prove that

f(x) = 0 ⇔ x ∈ A.

8.1.46. (8)
Construct a Peano-curve, a continuous and surjective map from

[0, 1] to [0, 1]2 and to [0, 1]3.

8.1.3 Differentiation in Rn

8.1.47. (1)
Is xy (R2 → R) differentiable? What is the derivative?

8.1.48. (2)

g(t) =

{

t2 if t ≥ 0

−t2 if t < 0

At what points is f(x, y) := g(x) + g(y) differentiable?

8.1.49. (2)
Sketch the level curves of f(x, y) = e

2x
x2+y2 . Given (x0, y0) in

which direction does f grow fastest?

8.1.50. (3)
At which points is || . ||1 :=

∑ |xi| differentiable?

8.1.51. (3)
Let 1 < p < ∞. At which points is the || . ||p := (

∑ |xi|p)1/p
function differentiable?

8.1.52. (7)
Give a function f : R2 → R for which all directional derivatives

exist at (0, 0) but which is not differentiable at (0, 0).

8.1.53. (5)
Let f : R2 → R be the distance of (x, y) from the interval

I := [0, 1]× {0}. At which points is f differentiable? Twice differentiable?

8.1.54. (2)
Let F : R2 → R be differentiable with derivative (f(x, y), g(x, y)).

What is the derivative of F (sin t, cos t)?
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8.1.55. (1)
f(x, y) = x2 + y3, g(x, y) = x2 + y4. Calculate the first and

second differentials at (0, 0).

8.1.56. (4)

f(x, y) =

{

xy x
2−y2
x2+y2 otherwise

0 if (x, y) = (0, 0)

∂2f

∂y∂x
(0, 0) =?

∂2f

∂x∂y
(0, 0) =?

8.1.57. (4)
Is the function (x, y) 7→ arcsin x

y uniformly continuous?

8.1.58. (2)
Let f(x, y) = log

√

(x− a)2 + (y − b)2. Show that ∂2f
∂x2 + ∂2f

∂y2 =
0.

8.1.59. (3)

f(x, y) =

{
(x2 + y2) sin 1√

x2+y2
otherwise

0 if (x, y) = (0, 0)

is differentiable everywhere but not continuously.

8.1.60. (3)
Let g(t) = sgn(t)·t2. Show that f(x, y) = g(x)+g(y) is everywhere

differentiable but is not twice differentiable along the two axes.

8.1.61. (3)
Show that (x− y2)(2x− y2) has no local minimum at (0, 0) even

though it has a local minimum along any lines through (0, 0).

8.1.62. (2)
f : R2 → R is smooth. Give a normal vector of the graph of

z = f(x, y) at the point (x0, y0, f(x0, y0)).

8.1.63. (3)
Find the minimum and maximum of x3+x2−xy on [0, 1]×[0, 1].

8.1.64. (3)
Find the maximum and minimum of xy · log(x2+y2) on x2+y2 ≤

r.

8.1.65. (1)
Prove that if f : R2 → R has partial derivative D1f ≡ 0, then f

only depends on y.

8.1.66. (2)
Prove that (x1, x2, . . . , xn) 7→ x1 + x2 + . . .+ xn is differentiable.

What is its derivative? For a given ε find δ!
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8.1.67. (2)
Prove that (x, y) 7→ xy is continuously differentiable on {(x, y) ∈

R2 : y > 0}. What is the derivative?

8.1.68. (3)
Prove that f(x, y) =

x3

x2 + y2
, f(0, 0) = 0 has directional deriva-

tives at the origin in all directions. Is there a vector a such that for all v unit
vector one has Dvf(0, 0) = a · v?

8.1.69. (4)
Describe those f : R2 → R for which D1f ≡ D2f?

8.1.70. (4)
Prove that if f : Rp → R is differentiable at a, f(a) = 0 and

f ′(a) = 0, then for all bounded g : Rp → R, gf is differentiable at a.

8.1.71. (5)
Give a function g whose directional derivatives all exist and

vanish at the origin, but
(a) g is not differentiable at the origin;
(b) not continuous at the origin;
(c) not bounded in any neighborhood of the origin.

8.1.72. (6)
Assume that f : R2 → R has a second partial derivative D12f

which is non-negative. Show that if a < b and c < d, then f(a, c) + f(b, d) ≥
f(a, d) + f(b, c).

8.1.73. (5)
Assume that f : R2 → R has a second partial derivative D12f

and for all a < b, c < d we have f(a, c) + f(b, d) ≥ f(a, d) + f(b, c). Show
that D12 is non-negative.

8.1.74. (5)
Find the derivative of tr : Rn×n → R, tr






a11 . . . a1n
...

. . .
...

an1 . . . ann




 =

a11 + a22 + . . .+ ann.

8.1.75. (2)
Find the derivative of the scalar product of n-dimensional vectors

when viewed as an R2n → R function.

8.1.76. (1)
Prove that (x, y) 7→ x/y is differentiable (y 6= 0). What is the

derivative?

8.1.77. (2)
Prove that (x1, x2, . . . , xn) 7→ x1x2 . . . xn is differentiable. What

is the derivative?

8.1.78. (5)
True or false? If f : R2 → R is differentiable and for all lines

through a f has a local minimum at a along the line, then f has a local
minimum at a.
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8.1.79. (5)
Let B be a real q × r matrix. What is the derivative of

f(x1, . . . , xq+r) = (x1, . . . , xq)M(xq+1, . . . , xq+r)
T ?

8.1.80. (5)
True or false? If f : R2 → R is differentiable at all points except

perhaps at the origin and at the origin it has vanishing directional derivatives
in all directions, then f is differentiable at the origin.

8.1.81. (3)

8.1.82. (4)
For which values of α, β > 0 is |x|α · |y|β twice differentiable at

the origin?

8.1.83. (1)
Write down the second degree Taylor polynomial of xyz at

(1, 2, 3).

8.1.84. (1)
Write down the third degree Taylor polynomial of sin(x+ y) at

(0, 0).

8.1.85. (3)
Find the local extrema of

x2 + xy + y2 − 3x− 3y + 5; x3y2(2− x− y).

8.1.86. (8)
Prove that if D12f and D21f exist in a neighborhood of (a, b)

and they are both continuous at (a, b), then D12f(a, b) = D21f(a, b).

8.1.87. (8)
Prove that if D1f , D2f and D12f exist in a neighborhood of (a, b)

and D12 is continuous at (a, b), then D21 exists and D12f(a, b) = D21f(a, b).
(Schwarz)

8.1.88. (3)
Find the local extrema of the following functions:

x3 + y3 − 9xy; sinx+ sin y + sin(x+ y)

8.1.89. (7)
Assume that f : R2 → R is differentiable and for all x, y we have

y2 ·D1f(x, y) = x2 ·D2f(x, y).

Prove that f(x, y) = g(x3 + y3) for some g. Is it necessarily true that the
function g is differentiable at 0?
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8.1.90. (3)
Prove that if f1, ..., fp : R → R are twice differentiable and

convex, then g(x1, . . . , xp) = f1(x1) + . . .+ fp(xp) is also convex.

8.1.91. (3)
What are the local extrema of xy + 1

x + 1
y ?

8.1.92. (5)
How many local maximum and minimum places exist for (1 +

ey) cosx− yey?
8.1.93. (2)

Let f(x, y) = ψ(x− ay) + ϕ(x+ ay), where ψ,ϕ are smooth.

∂2f

∂y2
− a2 ∂

2f

∂x2
=?

8.1.94. (4)
For what c is

f(x, y) =

{ |x|cy√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

differentiable?

8.1.95. (7)
Prove that if f : R2 → R is differentiable and D1f(x, y) =

yD2f(x, y) for all x, y, then there is a g : R → R differentiable function for
which f(x, y) = g(exy).

8.1.96. (7)
Prove that if H ⊂ Rp is convex and open and f : H → R is

convex, then f is Lipschitz on all compact subsets of H.

8.1.97. (9)
Given F : Rp → R twice differentiable convex function we are

looking for the minimum of F using the conjugate gradient method : start
with x0 and let

xn+1 = xn − c(xn) · gradf(xn),
where c(xn) is computed from the first and second derivatives of f at xn.

(a) What is a good choice for c(xn)?
(b) Prove that the method works for quadratic forms.

8.1.98. (4)
Let H ⊂ Rp+q, a ∈ Rp, b ∈ Rq, (a, b) ∈ intH and f : H → R

differentiable at (a, b) and assume that near a there is a differentiable function
ϕ to Rq such that f(x, ϕ(x)) = 0. Prove that

f ′a(b) ◦ ϕ′(a) = −(f b)′(a).
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8.1.99. (4)
For |x| < 1, |y| < 1, |z| < 1 let u(x, y, z) be the real root of

(2 + x)u3 + (1 + y)u− (3 + z) = 0.

Find u′(0, 0, 0).

8.1.100. (4)
For |x1 − 10| < 1, |x2 − 20| < 1, |x3 − 30| < 1 let u = (u1, u2) be

the root of

u1 + u2 = x1 + x2 + x3 − 10, u1u2 =
x1x2x3

10

closest to (30, 20). Find u′(10, 20, 30).

8.1.101. (4)
Given the constraints x2 + y2 = 1, x2 + z2 = 1 find the largest

possible values of x, x+ y + z, and y + z.

8.1.102. (4)
Find the maximum of xyz given the constraints x + y + z = 5

and x2 + y2 + z2 = 9.

8.1.103. (5)
Let A and B be n× n real symmetric matrices where detA 6= 0.

(a) Prove that if x → xTBx has a local extremum at x0 ∈ Rn given the
constraint xTAx = 1, then x0 is an eigenvector of A−1B.

(b) What is the meaning of the eigenvalue corresponding to the eigenvector
x0?

8.1.104. (6)
Given p1, . . . , pn in 3-space we are looking for the plane through

the origin for which the sum of the squared distances from the points to the
plane is minimal. Let v be the normal vector of this plane, where |v| = 1.

(a) Show that v is an eigenvector of the matrix
n∑

i=1

pip
T
i .

(b) What is the geometric meaning of the eigenvalue corresponding to the
eigenvector v?

8.1.105. (4)
What is the image of x2 + y2 ≤ 1 under the map x2y3 log(x2 +

y2)?

8.1.106. (5)
Let f : R3 → R be twice differentiable. Prove that if

〈f ′(x, y, z), (x, y, z)〉 ≥ 0

holds everywhere, then

D11f(0, 0, 0) +D22f(0, 0, 0) +D33f(0, 0, 0) ≥ 0.
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8.1.107. (4)
Find the distance of (5, 5) from the hyperbola xy = 4 using

Lagrange multiplicators.

8.1.108. (7)
We know that f : R2 → R is differentiable and

y2 ·D1f(x, y) + x3 ·D2f(x, y) = 0.

Prove that f(
√
2, 3
√
3) = f(0, 0).

8.1.109. (4)
Is the function

f(x, y, z) =

{
sin2 x+sin2 y+sin2 z

x2+y2+z2 (x, y, z) 6= (0, 0, 0)

1 x = y = z = 0

differentiable at the origin?

8.2 Vector Valued Functions of Several Vari-

ables

8.2.1 Limit and Continuity

8.2.1. (5)
f : Rp → Rq, A,B ⊂ Rp, x ∈ A∩B. Assume that f is continuous

at x when restricted to either A or B. Prove that f is continuous at x when
restricted to A ∪ B. Does this remain true for a union of infinitely many
sets?

8.2.2. (3)
f : Rp → Rq, A,B ⊂ Rp. Assume that f is continuous when

restricted to either A or B. Is it true that f is continuous when restricted to
A ∪B?

8.2.3. (3)
Let f : Rp → Rq, A,B ⊂ Rp be closed. f is continuous when

restricted to either A or B. Is it true that f is continuous when restricted to
A ∪B?

8.2.4. (10)

8.2.2 Differentiation

8.2.5. (3)
f : R2 → R3, (x, y) 7→ (ex, x2+y2, sinx); g : R3 → R, (X,Y, Z) 7→

XY . (g ◦ f)′ =?



8.2. Vector Valued Functions of Several Variables 121

8.2.6. (1)
Find the Jacobi-matrix of the following functions

f(x, y) =
(
x+ y, xy, cos(x+ y)

)
; g(x, y) =

(
ex+y, xy

)
; h = f ◦ g.

8.2.7. (2)
Prove that vectorial product viewed as a R6 → R3 function is

differentiable. What is its derivative?

8.2.8. (4)
What is the Jacobi matrix of the local inverse of f(x, y) =

(x2 − y2, 2xy)?

8.2.9. (5)
Let A : Rn → Rn be an invertible linear transformation. Show

that

||A−1|| = 1

min{Ax|x ∈ Sn−1
0 (1)} .

8.2.10. (5)
Find an A : Rn → Rn linear transformation for which

√
∑

i,j

a2i,j > ||A||.

Show that ≥ is always true.

8.2.11. (8)
Prove that

max
1≤j≤p

√
√
√
√

q
∑

i=1

a2ij ≤

∥
∥
∥
∥
∥
∥
∥






a11 . . . a1p
...

...
aq1 . . . aqp






∥
∥
∥
∥
∥
∥
∥

≤

√
√
√
√

q
∑

i=1

p
∑

j=1

a2ij .

Give an example when equality does not hold.

8.2.12. (2)
Find the Jacobi-matrix of the following functions:

f(x, y) =
(
sinx, cos y); g(x, y) =

(
log x, x2 + y2); h = f ◦ g.

8.2.13. (4)
Let f : Rp → Rq be differentiable at the points of the interval

[a, b] ⊂ Rp. Prove that

|f(b)− f(a)| ≤ |b− a| · sup
c∈[a,b]

||f ′(c)||.
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8.2.14. (7)
Prove that for all A ∈ Hom(Rp,Rp) ||A|| ≥ | detA|1/p.

8.2.15. (5)

(a) Prove that all linear maps Rp → Rq are Lipschitz.
(b) Prove that ifA ∈ Hom(Rp,Rp) is invertible, then ∃c > 0∀x ∈ Rp |A(x)| ≥

c|x|.



Chapter 9

Jordan Measure and

Riemann Integral in

Higher Dimensions

9.0.1. (2)
Prove that for all 0 ≤ a ≤ b there exists a bounded set H ⊂ Rp

for which b(H) = a and k(H) = b.

9.0.2. (3)
Let H ⊂ Rp be a bounded set. Determine whether the following

statements are true or false.

(a) If k(H) = 0, then H ∈ J .
(b) If H ∈ J , then ∂H ∈ J .
(c) If ∂H ∈ J , then H ∈ J .

(d) If H ∈ J , then intH ∈ J .
(e) If H ∈ J , then clH ∈ J .
(f) If intH ∈ J and clH ∈ J , then H ∈ J .

9.0.3. (5)
Let A,B ⊂ Rp be disjoint bounded sets. Order the following

numbers

k(A ∪B); b(A ∪B); k(A) + k(B); b(A) + b(B);

k(A) + b(B); b(A) + k(B).

9.0.4. (5)
Let f : (0, 1) → R, f(x) = x sin log x. Is this a function of

bounded variation? Is it absolutely continuous?

123
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9.0.5. (4)
Determine whether the following statements are true or false.

Here f is a function from [a, b] to R.
(a) If f is monotonic, then f is of bounded variation.
(b) If f is continuous, then f is of bounded variation.
(c) If f is continuous and of bounded variation, then f is Lipschitz.
(d) If f is of bounded variation, then the interval [a, b] can be written as

the union of countable many subintervals on each of which f is monotonic.

(e) If the
∫ b

a
df Stieltjes integral exists, then f is absolutely continuous.

(f) If f is absolutely continuous, then f is Riemann-integrable.

9.0.6. (5)
Let H ⊂ Rp be a bounded set. Are the following statements true

or false?
(a) If clH ∈ J , then H ∈ J .
(b) If H is closed and H ∈ J , then intH ∈ J .
(c) If H is open and H ∈ J , then clH ∈ J .
(d) If k(intH) = b(clH), then H ∈ J .
(e) ∂H ∈ J .

9.0.7. (4)
Let A ⊂ Rp, B ⊂ Rq be bounded sets. True or false?

(a) k(p+q)(A×B) = k(p)(A) · k(q)(B).
(b) b(p+q)(A×B) = b(p)(A) · b(q)(B).
(c) If A and B are measurable, then A×B is also measurable and t(p+q)(A×

B) = t(p)(A) · t(q)(B).

9.0.8. (6)
Let A1, . . . , An be measurable sets in the unit cube whose mea-

sures add up to more than k. Show that there is a point which is contained
in at least k of these sets.

9.0.9. (5)
Prove that if A ⊂ B ⊂ Rp and B is Jordan-measurable, then

t(B) = k(A) + b(B \A).

9.0.10. (5)
Show that a bounded set A ⊂ Rp is measurable if and only if

k(B) = k(B ∩A) + k(B \A)

for any set B ⊂ Rp.

9.0.11. (5)
Let A ⊂ [a, b] be Jordan-measurable. Connect the points of A

to an arbitrary (but fixed) point of the plane. Show that the union of these
line segments is Jordan-measurable in the plane. What is its “area”?
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9.0.12. (4)
Is it true that if A ⊂ R is measurable, then

{(x, y) :
√

x2 + y2 ∈ A} ⊂ R2

is measurable?

9.0.13. (7)
Prove that if B1, B2, . . . ⊂ Rp are pairwise disjoint open balls,

then

b

( ∞⋃

i=1

Bi

)

=
∞∑

i=1

b(Bi).

9.0.14. (7)
Show that for any 0 ≤ c ≤ d <∞ there exists a bounded, closed

set with interior measure c, and exterior measure d.

9.0.15. (6)
Prove that if m : J → R is non-negative, additive, translation-

invariant and normed, then m = t.

9.0.16. (5)
Prove that if A,B ⊂ Rp and clA ∩ clB is of measure zero, then

k(A ∪B) = k(A) + k(B).

9.0.17. (6)
Prove that a bounded set A ⊂ Rp is measurable if and only if

b(B) = b(B ∩A) + b(B \A)

for any set B ⊂ Rp.

9.0.18. (5)
Let A ⊂ Rp be Jordan-measurable. Is it true that the set

⋃

a∈A
[0, a]

is measurable?

9.0.19. (6)
For any ε > 0 divide the n-dimensinal unit cube into an open

and closed part in such a way that the inner Jordan measure of each is less
than ε.

9.0.20. (10)
For any H ⊂ Rp bounded set let B(H) be (a) largest open ball

in H if H has no interior, then let B(H) = ∅. Starting from an A0 ⊂ Rp

Jordan-measurable set let A1 = A and An+1 = An \ B(An). Prove that
lim b(An) = 0.

9.0.21. (9)
Is there a Peano-curve that is differentiable? (I.e. is there a

surjective differentiable map [0, 1]→ R2?)
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9.0.22. (8)
Let f : [0, 1]→ R2 be a simple closed curve. Does it follow that

its image has measure 0?

9.0.23. (3)
What is the moment of inertia for a cylinder of mass m, radius

r, and height 2h about an axis that goes through its center but is orthogonal
to its axis of symmetry?

9.0.24. (2)
Interchange the order of integration.

∫ 1

0

∫ 2x

x

f(x, y) dy dx;

∫ 1

−1

∫ x2+x+1

|x|
f(x, y) dy dx

9.0.25. (3)
∫ 1

0

∫ x

0

y2ex dy dx =?

9.0.26. (4)
The vertices of a triangle are A = (a, 0), B = (b, 0) and C =

(0,m). For (x, y) ∈ [0, 1]2 let

f(x, y) = (1− x)(1− y) ·A+ x(1− y) ·B + y · C.

Use this map and the theorem on measure transformation to determine the
area of the triangle.

9.0.27. (3)
Calculate the area of the set, defined with polar coordinates, by

β − 90◦ ≤ ϕ ≤ 90◦ − γ, 0 ≤ r ≤ m

cosϕ
.

9.0.28. (3)
∫

π2≤x2+y2≤4π2

sin(x2 + y2) dx dy =?

9.0.29. (7)
Prove that if A is measurable with positive measure and f is

integrable on A, then there is at least one point where f is continuous.

9.0.30. (5)
Let f be bounded and non-negative on the measurable set A.

Prove that
∫

A
f = 0 implies that k({x ∈ A : f(x) ≥ a}) = 0 for all a > 0. Is

the converse true?
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9.0.31. (10)
We need a simulated random sequence of normal distribution,

i.e. with density ̺(x) =
1√
2π
e−x

2/2. Given a random-number generator

that gives random numbers with uniform distribution in [0, 1] how can one
generate such a sequence. (Hint: use two sequences.)

9.0.32. (8)
For all continuous functions f : R→ R let I0f = f and for a ≥ 0

let Iaf be the function for which

(Iaf)(x) =

∫ x

0

f(t)
(x− y)a−1

Γ(a)
dx.

Prove that (a) (I1f)(x) =
∫ x

0
f ; (b) Ia+b = IaIb.

9.0.33. (5)
Prove Steiner’s theorem: if a rigid body has mass m and its

moment of inertia about an axis l through its center of mass is I, then the
moment of inertia about an axis parallel to l and of distance r is I +mr2.

9.0.34. (4)

∫ 1

0

(
∫ 1

√
y

√

1 + x3 dx

)

dy =?

∫ 1

0

(∫ 1

y2/3
y cosx2 dx

)

dy =?

9.0.35. (3)
Calculate the volume of {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, |z| ≤

e
√
x2+y2}.

9.0.36. (7)
Is it true that if f : [0, 1] × [0, 1] → R is monotonic on every

horizontal and vertical segments, then it is integrable?

9.0.37. (7)
Prove that if f > 0 on A ⊂ Rn with positive Jordan measure,

then
∫

A
f dx > 0.

9.0.38. (10)
Let a ∈ R.

∫∞
−∞

e−x2/2
√
2π

cos(ax) dx =?

9.0.39. (6)
Prove that a bounded set K ⊂ Rn is Jordan-measurable if and

only if it cuts all bounded open sets “properly” i.e. for all bounded open set
X ⊂ Rn one has b(X ∩K) + b(X \K) = b(X).

9.0.40. (6)
Prove that a bounded set K ⊂ Rn is Jordan-measurable if and

only if it cuts all bounded closed sets “properly” i.e. for all bounded closed
set X ⊂ Rn one has k(X ∩K) + k(X \K) = b(X).
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9.0.41. (4)
Give a function ϕ : [0, 2] → R such that for any continuous

function f : [0, 1]→ R

∫ 1

0

∫ 1

0

f(x2 + y2) dx dy =

∫ 2

0

fϕ.

9.0.42. (4)
∫ π/2

0

(
∫ π/2

x

sin y

y
dy

)

dx =?

9.0.43. (3)
What is the moment of inertia of a cone about its axis of rotation

if it has homogeneous mass distribution with mass m, its height is h and its
base disc has radius r?

9.0.44. (8)
Prove that if F1 ⊃ F2 ⊃ . . . are bounded, closed sets and

∞⋂

n=1
Fn

is of measure zero, then k(Fn)→ 0.

9.0.45. (9)
Let Γ(s) =

∫∞
0
xs−1e−x dx and B(s, u) =

∫ 1

0
xs−1(1− x)u−1 dx

be Euler’s Gamma and Beta functions. Show that

B(s, u) =
Γ(s)Γ(u)

Γ(s+ u)
.

9.0.46. (7)
Express the volume of the n-dimensional unit ball using Euler’s

Γ function. What is the volume of the “half-dimensional” unit ball?

9.0.47. (4)
Prove that

∞∑

n=1
e−n

2x is infinitely differentiable on (0,∞).

9.0.48. (4)
∫ 1

0

√
x

(∫ 1

x3/4

ey
3

dy

)

dx =?

9.0.49. (7)
Prove that for s > 0 Γ(s) · Γ′′(s) >

∣
∣Γ′(s)

∣
∣
2
.

9.0.50. (7)
Formulate and prove the Dirichlet and Abel criterions for im-

proper integrals.
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9.0.51. (6)
Formulate a Weierstrass type criterion for improper Stieltjes

integrals.

9.0.52. (7)
Is f(t) =

∫ t

1

∫ t

1

exyt dx dy (t > 1) differentiable? What is its

derivative?

9.0.53. (7)
Let f : R3 → R be continuous, and

G(r) =
∫

x2+y2≤r2 f(x, y, r) dx dy (r > 0).

(a) Show that G is continuous.
(b1) Show that if f continuously differentiable, then G is also continuously

differentiable. What is G′?
(b2) Can the condition of continuous differentiablity be weakened?

9.0.54. (8)
Prove that Euler’s Beta function is strictly convex.

9.0.55. (7)
Is f(t) =

∫ t

1

ex
2t dx differentiable? What is its derivative?

9.0.56. (7)
Let f : R2 → R be continuous and G(x) =

∫ x2

−x
f(x, y) dy.

(a) Prove that G is continuous.
(b1) Show that if f is continuously differentiable, then G is also continu-

ously differentiable. What is G′?
(b2) Can the condition of continuously differentiability weakened?

9.0.57. (5)
Show that Euler’s Beta function is infinitely differentiable and

express its derivative as an integral.

9.0.58. (10)
According to Tauber’s theorem if lim

r→1−0

∞∑

n=0

anr
n = C exists and

finite and moreover nan → 0, then
∞∑

n=0

an = C.

(a) Formulate a Tauberian theorem for parametric integrals.
(b) Prove the Tauberian theorem for parametric integrals you formu-

lated.

9.0.59. (10)
For x ∈ R let I(x) =

∫ ∞

−∞

e−t
2/2

√
2π

cos(xt) dt.

(a) Prove that I(x) · I(y) = I
(√

x2 + y2
)
.

(b) Describe the behavior of I near 0.
(c) I(x) =?
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9.0.60. (9)
Let B be Euler’s Beta function. Prove that logB is convex.



Chapter 10

The Integral Theorems of

Vector Calculus

10.1 The Line Integral

10.1.1. (3)
Let γ : [1, 2]→ R3, γ(t) = (log t, 2t, t2).

(a) Determine the length of γ.
(b) Determine the line integral of the vector field f(x, y, z) = (x, y, z) along

the curve γ.

10.1.2. (3)
Let C be the geometric curve {(x, y)| |x|+ |y| = a}.

∫

C
xy ds =?

10.1.3. (3)
Let γ : [0, 2]→ R2, (t) 7→ (t, t2). Compute the

∫

γ
(−y, x) dg line

integral where g is the identity function.

10.1.4. (3)
Let γ be the semicircle which is the right part of the circle

centered at 0 with radius a (i.e. those points satisfying x ≥ 0).
∫

γ
x dy =?

10.1.5. (3)
Let γ be the semicircle which is the upper part of the circle

centered at 0 with radius a (i.e those points satsifying y ≥ 0).
∫

γ
x2 ds =?

10.1.6. (4)

a)

∫ 2

0

sinx d{x} =? b)

∫

γ

x2 d(y2) =?

where γ is the triangle with vertices (0, 0), (2, 0), (0, 1).
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10.1.7. (4)
Calculate the line integral

∫
xy dy on the curve in the figure.

1−1

1

0

10.1.8. (3)
Determine the line integral of the vector field

(
x

1 + y
,

y

2 + x

)

along the parabola y = x2 segment between the points (−1, 1) and (1, 1).

10.1.9. (4)
Consider a map g : [a, b]→ R as a one-dimensional curve. When

is it rectifiable? What is its length?

10.1.10. (4)
Let g : [0, 1]→ R2 be a simple closed and rectifiable curve. Prove

that ∫

g

x2 dx =

∫

g

e− cos y2 dy = 0.

10.1.11. (4)
Let ∗ : Rp × Rq → Rr be bilinear, f : Rq → Rp continuous and

g : [a, b]→ Rq a continuous curve. Show that
(a) if g is rectifiable, then

∫

g
f(x) ∗ dx exists;

(b) if g is continuously differentiable, then
∫

g
f(x) ∗ dx =

∫ b

a
f(g(t)) ∗

g′(t) dt.

10.2 Newton-Leibniz Formula

10.2.1. (3)
Let g(t) = (t, t2) (t ∈ [0, 1]). Calculate the line integrals:

∫

g

cosx dy

∫

g

〈(ex cosx, ex sin y),dx〉

10.2.2. (3)
Let g(t) = (1, t, t2) (t ∈ [0, 1]) and f(x, y, z) = (yz, xz, xy).

Calculate the following line integrals:
∫

g

f1 dx2

∫

g

〈f, dx〉
∫

g

f × dx
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Which of these integrals can be computed immediately from the fundamental
theorem of calculus for line integrals?

10.2.3. (4)
For what functions f : R2 → R will the following statement be

true? If g is a simple, closed rectifiable curve in R2, then
∫

g

x2y3 dy =

∫

g

f(x, y) dx.

Answer→

10.2.4. (5)
What differentiable f : R2 → R functions satisfy the following

statement? If g is a simple closed rectifiable curve in R2, then
∫

g

ex cos y dx =

∫

g

f(x, y) dy.

10.2.5. (5)
Give a continuous vector field f : R2 → R2 whose line inte-

gral vanishes on every closed rectifiable curve, but which is not everywhere
differentiable.

10.2.6. (7)
Show that if the line integral of a continuous f : R2 → R2

vanishes on any rectangles whose sides are parallel to the axes, then f is a
gradient field.
Related problem: 10.3.5

10.3 Existence of the Primitive Function

10.3.1. (2)
Which sets are simply connected?

R2 \ (Z× Z) R3 \ (Z× Z× Z) R3 \ {(cos t, sin t, 0) : t ∈ R}
R4 \ {(cos t, sin t, 0, 0) : t ∈ R}

10.3.2. (3)
Let G ⊂ Rp be open and connected. Show that the scalar

potentials of a vector field G→ Rp can differ only in constants.

10.3.3. (5)
Which of the following is simply connected?

R2 \ {(0, 0)} R3 \ {(0, 0, 0)} R3 \ {t, 0, 0) : t ∈ R} R4 \ {t, 0, 0, 0) : t ∈ R}
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10.3.4. (10)
Let G ⊂ Rp be open, let f : G → Rp be differentiable and

irrotational and let g, h : [0, 1] → G be continuously differentiable curves
with the same initial and end points. (I.e. g(0) = h(0) and g(1) = h(1).)
Assume that g and h are homotopic, ∃ϕ : [0, 1]2 → Rp continuous such that
ϕ(t, 0) = g(t), ϕ(t, 1) = h(t), and ϕ(0, u) = g(0) = h(0), ϕ(1, u) = g(1) =
h(1) for all u ∈ [0, 1].

(a) Show from Goursat’s lemma that
∫

g
〈f,dx〉 =

∫

h
〈f,dx〉.

(b) Assume in addition that ϕ is continuously differentiable
I(u) =

∫

ϕ(·,u)〈f,dx〉. Prove directly that I ′ = 0.

10.3.5. (6)
Redo the proof of Goursat’s lemma for rectangles.

10.3.6. (5)
Let H = R3 \ {(x, y, 0) : x2 + y2 = 1}. Give a differentiable

irrotational vector field H → R3 which is not a gradient field.

10.3.7. (5)
Which of the following vector fields are gradient fields? For those

that are not, give a closed curve on which the line integral of the field does
not vanish.

(x, y) (y, x)

( −y
x2 + y2

,
x

x2 + y2

) (

x
√

x2 + y2
,

y
√

x2 + y2

)

10.3.8. (5)
Let G = R3 \{(x, x, x) : x ∈ R}. Find a differentiable vector field

X : G→ R3 that is irrotational (curlX = 0) but is not a gradient field.

10.3.9. (4)
Which of the following vector fields are gradient fields? For those

that are not, give a closed curve on which the line integral of the field does
not vanish.

(cosh y;x sinh y) (coshx; y sinhx)

(
x

x2 + y2
;

y

x2 + y2
;

)

10.3.10. (3)
The electric field of a homogeneously charged line is orthogonal

to the line and its strength at distance d from the line is 2kρ/d. Determine
the electric potential difference (voltage) between two points.

10.3.11. (9)
Is H = R3 \ {(cos t, sin t, et) : t ∈ R} simply connected?

Answer→
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10.3.12. (10)
Let G = R2 \ {(−1, 0), (1, 0)}, and g be the curve shown in the

figure.

−1 1 x

y

g

(a) Show that the line integral of any differentiable irrotational vector field
f : G→ R2 along g is zero.

(b) Is g homotopic to a point in G?
(c) Is g homologous to 0 in G?

10.3.13. (8)
Let G ⊂ R2 be open and let ϕu(t) [0, 1]2 → G be continuously

differentiable family of curves. Show that for a continuously differentiable
f : G → R2 irrotational vector field the I(u) =

∫

ϕu
〈f,dx〉 parametric line

integral satisfies I ′(u) = 0.

10.4 Integral Theorems

10.4.1. (1)
Check the statement of Green’s theorem for [0, 1]× [0, 1] and the

function f(x, y) = xy.

10.4.2. (5)
What are the one-dimensional versions of gradient, divergence,

rotation and the divergence and Stokes theorems?

10.4.3. (2)
For a fixed a ∈ R3 let f(x) = a× x and g(x) = x× a (x ∈ R3).

div f =? div g =? rot f =? rot g =?

10.4.4. (3)
From the 9 possible compositions of div, rot, grad which ones are

meaningful? Which ones produce zero?

10.4.5. (5)
Let f : R3 → R3 be a smooth vector field. Show that

rot rot f = grad div f −





div grad f1
div grad f2
div grad f3



 .
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10.4.6. (8)
Let g be the polygonal boundary of the convex set F ⊂ R3. Show

that

~A =
1

2

∫

g

x× dx

is the right-handed area vector.

10.4.7. (3)
Let P = {(u, v) ∈ [0, 1]2 : u2 + v2 ≤ 1}, g(u, v) = (u, v, u2 + v2),

F = g(P ) and f(x, y, z) = (x, y, z). Rewrite the following surface integrals
as Riemann integrals of one or more variables.

∫

F

−→
dS;

∫

F

∣
∣ dS

∣
∣;

∫

F

〈

f,
−→
dS
〉

;

∫

F

f × −→dS.

10.4.8. (4)
Compute the surface area of a sphere of radius r using the

divergence theorem for the vector field f(x, y, z) = (x, y, z).

10.4.9. (9)
Let F be a continuously differentiable parametric surface in R3

that is bounded by the closed simple and rectifiable curve g in such a way
that the preimage of g in the parametrization is positively oriented. Show
that if f : R3 → R3 is continuously differentiable, then

∫

F

〈

rot f,
−→
dS
〉

=

∫

g

〈f, dx〉 .

10.4.10. (4)
Let B =

{
(x, y, z) : x2 + y2 + z2 ≤ 1

}
and f(x, y, z) = (yz, x −

z, z − y).
∫

∂B

〈

f,
−→
dS
〉

=?

10.4.11. (4)
Let B =

{
(x, y, z) : x2 + y2 + z2 ≤ 1

}
and f(x, y, z) = (yz, x −

z, z − y).
∫

∂B

f × −→dS =?
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10.4.12. (7)
Let G ⊂ R2 be simply connected open and let g : [0, 1]→ G be a

simple closed rectifiable curve with positive orientation. Let also A ⊂ G be
the bounded component of R2 \g and f : G→ R3 continuously differentiable.
Show that ∫

A

(Dxf ×Dyf) dx dy =
1

2

∫

f◦g
x× dx.

10.4.13. (5)
Let f1(x, y, z) = xyz and f2(x, y, z) = x2 + y2 + z2. Construct

a function f3 : R3 → R so that the surface integral of vector field (f1, f2, f3)
along any closed sphere is the volume of the enclosed ball.

10.4.14. (8)
(a) Let G ⊂ R3 and ϕt(u, v) : [0, 1]

3 → G be a family of contin-
uously differentiable parametric surfaces for which ϕt(u, v) is independent of
t for any boundary point (u, v) of the unit square. Let also F : G → R3 be
continuously differentiable and irrotational. Show that the integral

I(t) =

∫ 1

0

∫ 1

0

〈Dxϕt(x, y)×Dyϕt(x, y), F (ϕt(x, y)〉 dx dy

does not depend on t.
(b) Let G = R3 \ {(0, 0, 0)}. Give an irrotational H → R3 vector field

whose surface integral along the unit sphere does not vanish.
(c) Show that G is not diffeomorphic to R3.





Chapter 11

Measure Theory

11.1 Set Algebras

11.1.1. (3)
Let A and B be σ-rings. Describe the σ-ring generated by A∪B.

11.1.2. (7)
What is the smallest possible cardinality of an infinite σ-ring?

Answer→
11.1.3. (5)

Let T be the collection of the sets [a, b)× [c, d).
(a) Show that T is a semi-ring.
(b) What ring does T generate?
(c) Show that f : T → R is additive if and only if there is g : R2 → R for

which f
(
[a, b)× [c, d)

)
= g(b, d)− g(a, d)− g(b, c) + g(a, b).

11.1.4. (3)
(a) What ring do the half-lines [a,∞) generate?

(b) What σ-ring do the half-lines [a,∞) generate?
(c) What is the smallest cardinality of a generating set of the σ-ring of

Borel sets?

11.1.5. (5)
Show that all open sets are Fσ, and all closed sets are Gδ.

11.1.6. (7)
Prove that if f : R → R, then the set of points of continuity is

Borel, and give as small as possible of Borel class (e.g. Gδσδσδσδσ), to which
it still belongs.

Solution→
11.1.7. (6)

Prove that sets with property Fσ, respectively Gδ, are closed to
finite union and intersection.

139
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11.1.8. (5)
Show that Fσδσδ(R

n) ⊂ Gδσδσδ(Rn).

11.1.9. (7)
Let fn : [a, b] → R be continuous for all n. Prove that {x :

fn(x) convergent} is a Borel set, and give a Borel class as small as possible
to which it still belongs.

11.2 Measures and Outer Measures

11.2.1. (8)
For any ε > 0 give G ⊂ R which is open and dense and for which

λ(G) < ε.

11.2.2. (8)
Construct a Borel set H ⊂ R for which λ((a, b) ∩H) > 0 and

λ((a, b) \H) > 0 for any a < b.

11.2.3. (5)
Let µ be a translation-invariant measure on the Borel sets of

R, for which µ
(
[0, 1]

)
< ∞. Show that µ is the Lebesgue measure up to a

constant multiple.

11.2.4. (5)
Show that if H ⊂ R satisfies λ((a, b) ∩H) <

99

100
(b − a) for all

a < b, then H is a null-set.

11.2.5. (9)
Can one find continuum many Lebesgue measurable sets in [0, 1]

all of measure 1/2 such that for any two the intersection has measure 1/4?

11.2.6. (4)
Let f : R→ R be monotonically increasing and for all a ≤ b let

µ
(
[a, b]

)
= f(b+ 0)− f(a− 0). What measure does this generate?

11.2.7. (5)
Let f : R→ R be monotonically increasing and µf the Lebesgue–

Stieltjes measure generated by f . Show that for any Borel set H there are
Fσ B ⊂ H and Gδ K ⊃ H sets for which µf (B) = µf (K) = µf (H).

11.2.8. (8)
(a) Show that if A ⊂ Rp is measurable and λ(A) > 0, then A−A

contains a ball centered at the origin (Steinhaus).
(b) Show that if A,B ⊂ Rp are measurable with positive measure, then

A+B has a non-empty interior.
(c) Show that if A ⊂ Rp measurable with positive measure and B ⊂ Rp

has positive outer measure, then A+B has a non-empty interior.
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11.3 Measurable Functions. Integral

11.3.1. (2)
Prove that if f : R → R is monotonic, then it is Borel-

measurable.

11.3.2. (2)
Prove that the composition of Borel-measurable functions is

Borel-measurable.

11.3.3. (4)
Show that if f : [a, b]→ R is Lebesgue-measurable, then there is

g : [a, b]→ R Borel-measurable such that f = g a.e.

11.3.4. (9)
Construct a function f : [0, 1] → R whose restriction to any set

with full measure is not continuous.

11.3.5. (2)
Let f : R→ R be Borel-measurable, and g :M → R measurable

for some (M,µ) measure space. Prove that f ◦ g is µ-measurable.

11.3.6. (2)
True or false? If f : [a, b] → R is Riemann-integrable, then it is

Borel-measurable.

11.3.7. (2)
Let A ⊂ R be Lebesgue-measurable and χA(x) =

{

1 x ∈ A
0 x 6∈ A .

Show that
∫

R
χA dλ = λ(A).

11.3.8. (5)
Show that if f > 0 on a µ-measurable A such that µ(A) > 0,

then
∫

A
f dµ > 0.

11.3.9. (7)
True or false? If f [a, b]→ R is bounded and Lebesgue-integrable,

then there is a g : [a, b]→ R that is Riemann-integrable and for which f = g
a.e.

11.3.10. (5)
Is there any measurable function f : R→ [0,∞), whose integral

over any interval is +∞?

11.4 Integrating Sequences and Series of Func-

tions

11.4.1. (8)
True or false? If fn : R→ R are Lebesgue-measurable, then they

have a subsequence that converges a.e.
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11.4.2. (4)
Apply Lebesgue’s monotone convergence theorem to calculate

lim
n→∞

∫ n

0

(

1 +
x

n

)n

e−2x dx.

11.4.3. (4)
True or false? If f1 ≥ f2 ≥ . . . are non-negative and Lebesgue-

measurable, then

lim

∫

fn dλ =

∫

(lim fn) dλ.

11.4.4. (4)
Let A = {1, 2}, and let µ : A → R be the counting measure.

State and explain Fatou’s lemma in this situation.

11.4.5. (5)
Give a sequence fn : [0, 1] → R that converges pointwise, for

which lim
∫ 1

0
fn exists but lim

∫ 1

0
fn 6=

∫ 1

0
lim fn.

11.4.6. (4)
Derive the monotone convergence theorem from Fatou’s lemma.

11.4.7. (3)
State the dominated convergence theorem for series.

11.4.8. (5)
True or false? If fn is non-negative and µ-measurable on a

µ-measurable set A and
∫

A
fndµ < 1/n, then fn → 0 µ-a.e.

11.4.9. (5)
Show using the Borel–Cantelli lemma that if fn is non-negative

and µ-measurable on a µ-measurable set A and
∫

A
fndµ < 1/n2, then fn → 0

µ-a.e.

11.4.10. (4)
Show using the Beppo Levi’s theorem that if fn is non-negative

and µ-measurable on a µ-measurable set A and
∫

A
fndµ < 1/n2, then fn → 0

µ-a.e.

11.4.11. (8)
Show without Lebesgue theory that if fn : [0, 1] → [0, 1] is

continuous for all n and fn(x)→ 0 for all x ∈ [0, 1], then
∫ 1

0
fn(x) dx→ 0!

11.5 Fubini Theorem

11.5.1. (6)
Assume the continuum hypothesis and let ≺ be a well-ordering

of [0, 1] of type ω1. Let

A = {(x, y) ∈ [0, 1]2 : x ≺ y}.
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(a) Show that the horizontal sections of A are null-sets.
(b) Show that the vertical sections of A have full measure.
(c) Show that A is non-measurable with respect to 2-dimensional Lebesgue

measure.

11.6 Differentiation

11.6.1. (2)
What is the Radon–Nikodym derivative of the Lebesgue mea-

sure?

11.6.2. (3)
Assume that f : R → R is Lipschitz, and ∀x, y |f(x) − f(y)| ≤

K|x− y|.
(a) Show that f is the integral-function of a Lebesgue-measurable g.
(b) Show that |g| ≤ K a.e.

11.6.3. (5)
True or false? If f is absolutely continuous and strictly increasing

on [a, b], then its inverse is also absolutely continuous.

Answer→

11.6.4. (4)
Prove that if f and g are absolutely continuous on [a, b], then

f · g is also absolutely continuous on [a, b].

11.6.5. (5)
Let f : C → [0, 1] be the Cantor function. For each H ⊂ [0, 1]

Borel set let µ1(H) = λ(f(H ∩ C)), µ2(H) = λ(f−1(H)) and µ3 = µ1 + µ2.
Which pairs of the measures µ1, µ2, µ3 and λ are singular, absolutely contin-
uous? What is the Lebesgue decomposition of the measures µi with respect
to Lebesgue measure? What is the Lebesgue decomposition of Lebesgue
measure with respect to the µi?

11.6.6. (7)
Construct a strictly increasing singular function on [0, 1].

11.6.7. (9)
f : [0, 1]→ R satisfies |f(x)− f(y)| ≤ |x− y| for all x, y ∈ [0, 1].

Show that for all ε > 0 the graph of f can be covered with countably many
rectangles (not necessarily parallel to the axis) in such a way that the sum
of the shorter sides is less than ε.

(Vojtech Jarnik competition, 2010)





Chapter 12

Complex differentiability

12.0.1 Complex numbers

12.0.1. (3)
(
n

0

)

+

(
n

3

)

+

(
n

6

)

+ . . . =?

Hint→
12.0.2. (3)

Let a, b, c ∈ C. What is the geometric interpretation of

1

2
Im
(

(c− a) · (b− a)
)

?

Answer→
12.0.3. (4)

Assume that w : C→ C is a distance preserving map. Show that
w(z) = Az +B or w(z) = Az̄ +B, where |A| = 1.

12.0.4. (2)
What are the product, the sum and the sum of squares of the

complex mth roots of unity?

Hint→
12.0.5. (5)

What is the product, the sum, and the sum of squares of all
primitive m-th roots of unity?

12.0.6. (3)
Let A1A2 . . . An be the vertices of a regular n-gon, inscribed into

a unit circle, and let P be another point on the circle. Prove that

PA1 · PA2 · . . . · PAn ≤ 2.
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12.0.7. (5)
Let p(z) ∈ C[z] be of degree at least 1. Prove the following

(a) If all roots of p have negative real parts, then Re
p′(z)

p(z)
> 0.

(b) If the roots of p(z) all lie in the half plane Re z < 0, then the same
holds for p′(z).

(c) (Gauss) If p(z) ∈ C[z], then the roots of p′ are contained in the convex
hull of the roots of p.

12.0.8. (7)
Let f(z) ∈ C be non-constant. Prove the following

(a) Re f and Im f have no local extrema.
(b) If |f | has a local extremum at z0, then f(z0) = 0.
(c) Prove the fundamental theorem of algebra.

12.0.9. (7)
Let n ≥ 2 and u1 = 1, u2, . . . , un be complex numbers with

absolute value at most 1, and let

f(z) = (z − u1)(z − u2) . . . (z − un).

Show that the polynomial f ′(z) has a root with non-negative real part.
KöMaL A. 430.

Solution→

12.0.10. (3)
Let w(z) = 1

2

(
z + 1

z

)
be the so-called Zhukowksy map. What is

the image of
(a) the unit circle?
(b) the interior of the unit circle?
(c) the exterior of the unit circle?
(d) the circles with center 0?
(e) the lines passing through 0?

Answer→
Related problem: 12.1.1

12.0.11. (3)
Sketch the set of those complex numbers for which

(a)

∣
∣
∣
∣

z − 1

z + 1

∣
∣
∣
∣
= 1; (b)

∣
∣
∣
∣

z − 1

z + 1

∣
∣
∣
∣
= 2;

(c) arg(z + 1) = arg(2z − 1) (−π < arg z ≤ π).

12.0.12. (3)
Sketch the set of those complex numbers for which

(a) Re(z2) = 4; (b) Re
z − 1

z + 1
= 0; (c) 0 < Re(iz) < 2π;

(d) | arg(z)| < π

4
.
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12.0.13. (3)
Sketch the set of those complex numbers for which

(a)
|z|
Re z

< K; (b) |z − 1|+ |z + 1| < 4; (c) Re
1 + z

1− z > 0.

12.0.14. (7)
Let k(z) =

z

(1− z)2 be the so-called Koebe map. What is the

image of the unit disc under the Koebe map?

12.0.15. (8)
Let f ∈ C[x] and let T be a rectangle such that f has no root on

the boundary of T . Show that the number of roots of f inside T agrees with
the winding number about 0 of the image of the boundary of T under f .

12.0.16. (5)
Let m > 1 and a, b : Zm → C be two functions. Define the sum

a+ b and the convolution a ∗ b of a and b as follows

(a+ b)(n) = a(n) + b(n); (a ∗ b)(n) =
m−1∑

k=0

a(k)b(n− k).

Prove that this makes the set of complex valued functions on Zm a commu-
tative ring with unit.

12.0.17. (6)
Let ε = cos 2π

m + i sin 2π
m . Define the Fourier transform of a

function a : Zm → C by

â(n) =
m−1∑

k=0

a(k)εnk.

Show that (̂a ∗ b)(n) = â(n) · b̂(n).

12.0.18. (8)
Find a formula for Fourier inversion in case of the finite Fourier

transform.

12.0.19. (9)
Let f : C→ C be a continuous function for which lim

z→∞
f(z)

z
= 1

(i.e.
f(z)

z
→ 1 if |z| → ∞). Show that the image of f is C.

12.0.20. (6)
Let a1, a2, . . . be a decreasing sequence of positive numbers that

converges to 0, and let b1, b2, . . . be a sequence of complex numbers such that
the partial sums b1 + . . . + bn are bounded by a constant independent of n.

Prove that

∞∑

n=1

anbn is convergent.
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12.0.21. (9)
Consider C as the xy-plane in 3-space and pick 2 semicircles in

the upper half space whose end points are the complex numbers a, b and c, d.
Show that the two semicircles intersect each other orthogonally if and only
if (a, b, c, d) = −1.

(Riesz competition, 1988)

12.0.2 The Riemann sphere

12.0.22. (9)
Stereographic projection (see figure) gives a bijection between

points on the unit sphere and the set C ∪ {∞}.
(a) Under this identification what transformations of the sphere arise from

the following complex functions?

z 7→ −z; z 7→ z; z 7→ iz; z 7→ 1

z
; z 7→ −1

z
; z 7→ z − i

1− iz
(b) What complex functions correspond to rotations of the sphere?

i

1

−i

0

∞

−1

12.1 Regular functions

12.1.1 Complex differentiability

12.1.1. (6)
Apply the conformal property of complex differentiable functions

to the Zhukowsky map to show that the ellipses and hyperbolas with foci −1
and 1 intersect each other orthogonally.
Related problem: 12.0.10

12.1.2. (3)
At what complex numbers is Im z ·Re2 z · i+ z differentiable?
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12.1.3. (3)
At what complex numbers is Im2 z +Re z + z differentiable?

12.1.4. (3)
At what complex numbers is |z|2 − (2 + i)z̄ differentiable?

12.1.5. (3)
Do these functions satisfy the Cauchy–Riemann equations?

(x2 + y2, 2xy); (x2 − y2, 2xy); (ex cos y, ex sin y).

12.1.6. (3)
Show that f(x, y) =

√

|xy| is not differentiable at 0 even though
it satisfies the Cauchy–Riemann equations there.

12.1.7. (5)
Let f be regular on the domain D with image D′. Assume that

f is injective and let the area of D′ be A(D′).
(a) Prove that

A(D′) =

∫

D

|f ′(z)|2 dx dy.

(b) Compare with the theorem on R2 → R2 functions.

12.1.2 The Cauchy–Riemann equations

12.1.8. (4)
Show that if f(z) is differentiable at z0, then so is g(z) := f(z)

at z0.

12.1.9. (4)
If f is entire, then so is g(z) := f(z̄).

12.1.10. (5)
Let D ⊂ R2 be an open domain and u, v : D → R2 twice

differentiable for which the map x+ yi 7→ u(x, y) + iv(x, y) is regular on D.
Show that

∂2u

∂x2
+
∂2u

∂y2
= 0.

12.2 Power series

12.2.1 Domain of convergence

12.2.1. (3)
What is the radius of convergence of the series

∞∑

0

(n2 − n)!
3n2 zn?
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12.2.2. (4)
Show that if f is the sum of a power series that converges on a

disc of radius R around z0, then the average of f around a circle of radius
r < R centered at z0 is f(z0).

12.2.3. (4)
For which z ∈ C is

∞∑

n=1

n2

3n
(z + 2i)n convergent?

12.2.4. (4)
For which z ∈ C is

∞∑

n=1

2n

3n + 5
(z+1−2i)n convergent? Absolutely

convergent?

12.2.5. (4)
Find the Taylor series of 1/(z2 − 1) around −2i and determine

its radius of convergence.

12.2.6. (4)
Find the Taylor series of 1/z around i and determine its radius

of convergence.

12.2.7. (4)
Find the Taylor series of 1/(z2 − 1) around i and determine its

radius of convergence.

12.2.8. (3)
Find the radius of convergence of the following series. At which

points do they converge, do they converge absolutely? What is their termwise
derivative, antiderivative and what is the radius of convergence of those se-
ries? What is the largest disc with the same center as the power series to
which these functions extend as regular functions?

∞∑

n=0

zn;

∞∑

n=0

(n+ 1)(z + 1)n
∞∑

n=0

(z − i)n
n!

;

∞∑

n=1

(z + i)n

n
.

12.2.9. (5)
(a) f(z) =

∞∑

0

zn

n
converges at all points on the unit circle except

z = 1.
(b) The function can be analytically continued along any of these points.

12.2.2 Regularity of power series

12.2.10. (6)
Assume that

∞∑

n=0

anz
n is convergent in the unit disc and is

injective there. Express the area of the image of the unit disc in terms of the
coefficients an.
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12.2.11. (6)
[(Parseval formula for power series)] Assume that f(z) =

∞∑

n=1

anz
n

is convergent on the disc |z| < r + ε. Prove that

1

2πr

∫

|z|=r

|f(z)|2 · | dz| =
∞∑

n=0

|an|2r2n.

12.2.3 Taylor series

12.2.12. (5)
Find the first four terms of the Taylor series around 0 of the

following functions:

a) tan z b)
1

ez − 1
c) ee

z
d)

ez − 1

sin z

12.3 Elementary functions

12.3.1 The complex exponential and trigonometric func-

tions

12.3.1. (7)
Let f(0) = 0 and f(z) =

1

sin z
− 1

z
when z 6= 0. Is f differentiable

at 0?

12.3.2. (4)
Show that the only periods of sin z are 2kπ, for k an integer.

12.3.3. (6)
Let Dε be the domain that one gets by deleting discs with center

kπ (k ∈ Z) and radius ε < π/2. Show that both 1/ sin z and cot z are bounded
on Dε.

12.3.4. (3)
Does e−1/z4 have a limit at 0?

12.3.5. (5)
Does any of the functions eiz, sin z, cos z, tan z, cot z have a limit

as Im z → ±∞?

12.3.6. (3)
Prove that

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

and
cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.
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12.3.7. (4)
Use the Cauchy product of the series that define the complex

exponential to show that ez+w = ezew.

12.3.8. (3)
Prove that the following equations have only real roots a)

z sin z = 1 b) tan z = z.

12.3.2 Complex logarithm

12.3.9. (5)
If f is regular and non-vanishing on the star-shaped domain D

prove that the antiderivative of f ′/f defines log f as a regular function on
D.

12.3.10. (5)
Let c ∈ C and for Re z > −1 let f(z) = (1 + z)c = exp

(
c ·

log(1+ z)
)
, where log is the principal branch. For what c can f be continued

through −1?

12.3.11. (4)
Take the branch of logarithm on C\{x + iy : x ≥ 0, y = sinx}

for which log 1 = 0. What is log(e3/2) for this branch?

12.3.12. (4)
What are the possible values of

eπe
iπ/2

log(3 +
√
3i)?

12.3.13. (6)
(a) Show that if f : C→ C is continuous and non-vanishing, then

arg f , log f , fα (for any α ∈ C) can be defined as continuous functions on C.
(b) Prove the fundamental theorem of algebra using the function z +

c n
√

p(z) and the Brouwer fixed-point theorem.

12.3.14. (8)
Can one prove the fundamental theorem of algebra by applying

the Brouwer fixed-point theorem to z + af(bz + c) with suitable a, b, c?

12.3.15. (9)
On the domain in the figure f(z) = 3

√
cos z can be defined

regularly such that f(0) = 1. What is f(−π)?
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0−π −

π

2

π

2

12.3.16. (9)
On the domain in the figure f(z) =

√
cos z

1− z can be defined

regularly such that f(0) = 1.What is f(−π)?

−

π

2
0 1

π

2
−π

12.3.17. (9)
On the domain in the figure f(z) = log cos z can be defined

regularly such that f(0) = 0. What is f(π)?

π

2

5

2
π

3

2
π0 π

12.3.18. (6)
Sketch the following sets of the complex plane:

{

ez : 0 < Re z < 1, 0 < Im z <
π

2

}

;

{

log
1− z
1 + z

: Re z > 0

}

;

{

cos z : 0 < Re z <
π

2
, 0 < Im z

}

;
{

sin z : 0 < Re z <
π

2
, 0 > Im z

}

.
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12.3.19. (5)
Determine the image of the following maps:

a) w(z) = log z D = C\(−∞, 0]
b) w(z) = log z D = {|z| > 1, Im z > 0}
c) w(z) = tan z D = {0 < Re z < π}
d) w(z) = cot z D = {0 < Re z < π/4}
e) w(z) = sin z D = {0 < Re z < 2π, Im z > 0}

12.3.20. (4)
At which points is the regular branch of log(1 + z) differen-

tiable? What are the Taylor coefficients at 0? At 1? What is the radius of
convergence?



Chapter 13

The Complex Line Integral

and its Applications

13.0.3 The complex line integral

13.0.1. (4)
Find the following integrals:

a)

∫

|z|=1

Im(z) dz b)

∫

|z|=1

z dz c)

∫

[0,1+i]

ez dz

d)

∫

|z|=1

1

z
dz e)

∫

[1,i]

|z|2 dz f)

∫

|z|=2

1

z2 + 1
dz

13.0.2. (3)
Let Γ1 be the union of (0, 1) and (1, 1 + i) oriented from 0 to

1 + i, let Γ2 be the segment from 0 to 1 + i and let Γ3 be the parabolic arc
on Im z = (Re z)2 from 0 to 1 + i. Calulate

∫

Γj
z2 from the definition.

13.0.3. (3)
Find the following integrals:
∫

|z|=1

Im z · Re z dz;
∫

|z|=1

z dz;

∫

[1,i]

|z|2 dz.

13.0.4. (3)
Let γ be the parabolic arc on Im z = (Re z)2 from −1+ i to 1+ i.

∫

γ

|z|2 dz =?

155
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13.0.5. (3)
Let Γ be the parabolic arc on Im z = (Re z)2 from 0 to 1 + i.

Find the following integrals:
∫

Γ

z2 dz;

∫

Γ

z2| dz|;
∫

Γ

z2 dz;

∫

Γ

|z2| · | dz|;
∫

Γ

|z2| · Im dz.

For which ones can the fundamental theorem of calculus of complex line
integrals be applied?

13.0.6. (3)
Determine the complex line integral of 1/z along a positively

oriented circle of center 0 with radius r.

13.0.7. (3)
Let r > 0 and n ∈ Z. Find

∫

|z|=r

zn dz.

13.0.8. (7)
Of the roots of the polynomial p(z), k is in {z : |z| < r}; the

others are outside. Let γ(t) = p(reit) (0 ≤ t ≤ 2π).
(a) How can

∫

γ
dz
z be computed using a substitution?

(b) What is the index of γ around 0?

13.0.9. (7)
Let D ⊂ C simply connected and f : D → C univalent. Prove

that f(D) is also simply connected.

13.0.4 Cauchy’s theorem

13.0.10. (7)
Show that for all a ∈ C

∫ ∞

−∞
e−x

2/2 · eiax dx =
√
2π · e−a2/2.

13.0.11. (5)
Let p(z) = zn+ bn−1z

n−1 + · · ·+ b1z+ b0 have degree n > 1 and

no roots in |z| > R. Let I(R) =
1

2πi

∫

|z|=R

dz

p(z)
. Show that

(a) lim
R→∞

I(R) = 0; (b) I(R) is constant. (c) I(R) = 0.

13.0.12. (5)
Find the following integrals:

a)

∫

[0,1+i]

ezdz b)

∫

|z|=1

1

z
dz c)

∫

|z|=2

dz

z2 + 1

(T is the square with vertices ±1± i oriented positively.)
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13.0.13. (6)
Let D be a simply connected domain that does not contain the

origin.
(a) Show that 1/z has an antiderivative on D.
(b) Show that if g′(z) = 1/z on D, then ze−g(z) is constant.
(c) Show that log z has a continuous branch on D.

13.0.14. (6)
Let D be a simply connected domain and f(z) a non-vanishing

holomorphic function on D.
(a) Show that f ′(z)/f(z) has an antiderivative on D.
(b) Show that if g′ = f ′/f on D, then f(z)e−g(z) is constant on D.
(c) Show that log f has a continuous branch on D.

13.0.15. (5)
Let a and b be different complex numbers. Show that on C\ [a, b]

there is a holomorphic branch of log z−a
z−b .

13.1 The Cauchy formula

13.1.1. (8)
Let f be a holomorphic function on the disc |z| < 1 + ε and let

|a| < 1. Find a function ϕa : [0, 2π]→ R such that

f(a) =
1

2π

∫ 2π

0

f(eit)ϕa(t)dt.

13.1.2. (8)
Prove for any complex number a that

1

2π

∫ 2π

0

log
∣
∣eit + a

∣
∣ dt =

{

log |a| if |a| > 1,

0 if |a| ≤ 1.

13.1.3. (6)
Let f be continuous on the closed unit disc and holomorphic in

its interior. Prove that for |z| < 1

f(z) =
1

2πi

∫

|z|=1

f(ξ)

z − ξ dξ.

13.1.4. (8)
Let f be a holomorphic function on the disc |z| < 1 + ε. Prove

that

log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(eit)| dt.

When does equality hold?
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13.1.5. (7)
Let n ∈ Z. Find

∫

|z|=2

zn

(z − 1)(z − 3)
dz.

13.1.6. (4)

1

2πi

∫

|z|=5

cos z

z
dz =?

∫

|z|=3

ez

z
dz =?

∫

|z|=3

ez

z − 2
dz =?

∫

|z|=3

ez

(z − 2)(z − 4)
dz =?

13.1.7. (7)
Let a, b ∈ C and |b| < 1. Prove that

1

2π

∫

|z|=1

∣
∣
∣
∣

z − a
z − b

∣
∣
∣
∣

2

| dz| = |a− b|
2

1− |b|2 + 1.

Hint→ Solution→

13.1.8. (2)
∫

|z|=2

3z

(z − 1)2(z + 3)2
dz =?

13.1.9. (2)
The function f(z) is holomorphic in the interior of the unit disc

(|z| < 1) and |f | < 1. How large can |f ′′′(0)| be?
Answer→

13.1.10. (5)
Show that if f ∈ O(|z| ≤ 1), then a) f ′(z) (1− |z|) is

bounded.
b) What can we say about the n-th derivative?

13.1.11. (3)

1

2πi

∫

|z|=5

cos z

z2
dz =?

∫

|z|=3

ez

z8
dz =?

∫

|z|=3

ez

(z − 2)3
dz =?
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13.1.12. (3)
For a, r > 0 find the following integrals:

1

2πi

∫

|z|=r

az dz;
1

2πi

∫

|z|=r

az

z
dz;

1

2πi

∫

|z|=r

az

z + 1
dz;

1

2πi

∫

|z|=r

az

z2
dz;

1

2πi

∫

|z|=r

az

(z + 2)2
dz.

13.2 Power and Laurent series expansions

13.2.1 Power series expansion and Liouville’s theorem

13.2.1. (9)

The sequence a0, a1, . . . , is defined recursively by a0 = −1 and the

requirement

n∑

k=0

ak
n− k + 1

= 0 for all n ≥ 1. Show that for all

n ≥ 1 an > 0. (IMO Shortlist, 2006)

Use complex analysis to solve this probem by showing that

an =

∫ ∞

1

dx

xn(π2 + log2(x− 1))
.

13.2.2. (5)
Let f(z) =

∞∑

n=0

anz
n be entire that satisfies |f(z)| < e|z|. Prove

that |an| ≤
(
e
n

)n
.

13.2.3. (9)
Prove that if f is entire and its image is disjoint from the real

interval [−1, 1], then f is constant.
Related problem: 12.0.10

13.2.4. (7)
Show that if f is a double peridodic entire function (i.e. f(z+a) =

f(z), f(z + b) = f(z) where a and b are linearly independent over Q, then f
is constant.

13.2.5. (4)
Let f ∈ O(C). Then Re f cannot be bounded either from below

or above.
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13.2.6. (3)
Find the Taylor series of

z2 + i

z2 + z
around i.

13.2.7. (5)
Find the Taylor series of (1 + x)c = exp

(
c · log(1 + z)

)
around

0.

13.2.8. (4)
Describe those f ∈ O(C) which do not take positive values.

13.2.9. (6)
Assume that f : C ↔ C is a biholomorphism. Show that

f(z) = Az +B.

13.2.2 Laurent series

13.2.10. (6)
Assume that f has antiderivatives of all order on the set 1 <

|z| < 2. Show that f has an analytic continuation to |z| < 2.
Related problem: 14.2.4

13.2.11. (5)
(Parseval formula for Laurent series) Assume that

f(z) =
∞∑

n=−∞
anz

n converges on r − ε < |z| < r + ε. Prove that

1

2πr

∫

|z|=r

|f(z)|2 · | dz| =
∞∑

n=−∞
|an|2r2n.

13.2.12. (5)
Find the Laurent series of

ez

z − 1
around 0 on |z| > 1.

13.2.13. (7)
Compute the coefficients of the Laurent expansion of f(z) =

1

(z − 2)(z + 1)
on 1 < |z| < 2 by using the Cauchy formula.

13.2.14. (3)
Find the Laurent series of

2z3 − 1

z2 + z
around i, on 1 < |z − i| <

√
2.

13.2.15. (3)
Find the Laurent series of z 7→ z

z2 − 3z + 2
around 3 on |z − 3| < 1,

|z − 3| > 2 and 1 < |z − 3| < 2.

13.2.16. (3)
Find the Laurent series of

1

1− z in 1 < |z − 2| < 3.
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13.2.17. (3)
Find the Laurent series of

1

1− z around 3 (within a disc of radius

2).

13.2.18. (5)
Find the Laurent series of ez+1/z around 0.

13.3 Local properties of holomorphic functions

13.3.1 Consequences of analyticity

13.3.1. (3)
An entire function f(z) satisfies |f(1/n)| = 1/n2 for n = 1, 2, . . .,

and |f(i)| = 2. What are the possible values of |f(−i)|?
Hint→ Solution→

13.3.2. (7)
Show that if f takes only real values on the real and imaginary

axes, then f is even.

Hint→
13.3.3. (5)

Give an example of a function that is holomorphic in the open
unit disc and has infinitely many roots there.

Solution→
13.3.4. (6)

Assume that f ∈ O(C) and |f(x)| = 1 for all x ∈ R. Prove that

f(z̄) =
1

f(z)
.

13.3.5. (7)
If f ∈ O(|z| > 1), is bounded and f(n) = 0 (n = 2, 3, . . . ),

then f ≡ 0.

13.3.6. (7)
Show that if f ∈ O(C),

∣
∣
∣
∣
f

(
1

n

)∣
∣
∣
∣
<

1

2n
, then f ≡ 0. Can one do

better?

13.3.7. (8)
Given that f ∈ O(C), f

(
1

n2

)

= cos
1

n
find f(−1).

13.3.2 The maximum principle

13.3.8. (7)
Let f be continuous on the closed unit disc and holomorphic

inside. Let A = max
0≤t≤π

|f(eit)| and B = max
π≤t≤2π

|f(eit)|. Show that |f(0)| ≤
√
AB.
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13.3.9. (5)
Let f be continuous on the closed unit disc and holomorphic

inside. Show that the image of the open disc is in the convex hull of the
image of the boundary circle.

13.3.10. (5)
Prove that if f is holomorphic on an open set, then neither the

real part nor the imaginary part of f has a local extrema.

13.3.11. (9)
[ (Hadamard)] Let 0 < r1 < r2 < r3 and let f be holomorphic

on r1 < |z| < r3 with a continuous extension to the boundary. Prove that

(

max
|z|=r2

|f(z)|
)log(r3/r1)

≤
(

max
|z|=r1

|f(z)|
)log(r3/r2)(

max
|z|=r3

|f(z)|
)log(r2/r1)

.

13.4 Isolated singularities and residue formula

13.4.1 Singularities

13.4.1. (4)
Prove that z

sin z and 1
sin z − 1

z have removable singularities at 0.

13.4.2. (5)
Assume that f has a pole of order m at a and that p is a

polynomial of degree n. Show that p (f(z)) has a pole of order mn at a.

13.4.3. (7)
Can ef have a pole at a point where f has an isolated singular-

ity?

13.4.4. (4)
Show that if f is holomorphic and bounded on |z| > 1, then it

has a limit at ∞.

13.4.2 Cauchy’s theorem on residues

13.4.5. (4)
If f ∈M(|z| < 1), then f has an antiderivative if and only if the

residue of f is 0 at all singularities.

13.4.6. (5)
Calculate the first 6 terms in the Laurent series of cot z and

π cot(πz) on the domain 0 < |z| < π. What are the residues of
cot z

z
,
cot z

z2
,

. . . ,
cot z

z5
in 0?
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13.4.7. (4)

1

2πi

∫

|z|=2

tan z dz =?

13.4.8. (4)
∫

Γ

tan z

z2 + 1
dx =?

0 1

iΓ

13.4.9. (3)
What are the singularities of π cotπz? Find the residues at these

points.

13.4.10. (4)
∫

Γ

dz

cos z
=?

1

i

0

Γ

13.4.11. (4)
Let Γ be the curve shown in the figure.

−1 1

Γ
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(a) Compute

∫

Γ

z20 + 2

z2 − 1
dz.

(b) Compute

∫

C(0,1)

sin z

z
dz.

13.4.12. (4)
∫

Γ

dz

(z − 1)2 sin z
=?

1

i

0

Γ

13.4.13. (5)
∫

Γ

dz
(

z − π

3

)2

sin z

=?

1

i

0

Γ

13.4.14. (5)

1

2πi

∫

|z|=1/4

dz

sin 1
z

=?

13.4.15. (4)

∫

|z|=2

sin
π

z
z4 − 1

=?
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13.4.16. (4)
Let 0 < r < π.

∫

|z|=r

dz

sin z
=?

13.4.17. (7)
Show that if the complex numbers a1, . . . , an are all different and

p(z) = (z − a1) · . . . · (z − an), then
n∑

j=1

p′′(aj)

(p′(aj))3
= 0.

13.4.18. (5)
∫

|z|=5

z2

sin z
dz =?

13.4.19. (4)
∫

|z−2|=4

z

sin z
dz =?

13.4.3 Residue calculus

13.4.20. (5)
Find the residues of tan z, tan2 z, tan3 z in 3π

2 .

13.4.21. (5)
What are the residues of

tan z

1− cos z
and

ez

tan z − sin z
in 0?

13.4.22. (4)
Find the singularities and residues of the following functions:

1

z
;

1

z2
;

1

z2 + 2z
;

1

sin z
; sin

1

z
;

ez

z2 + 4
;

ez

(z2 + 4)2
;

ez

(z2 + 4)3
ez − z3 + 8

z2 + 1

13.4.23. (5)
Let f and g be holomorphic in a neighborhood of z0.

(a) Assume that g has a simple zero in z0. Prove that Res
z0

f

g
=
f(z0)

g′(z0)
.

(b) Assume that g has a double zero in z0. Express Res
z0

f

g
in terms of

Taylor coefficients of f and g.
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13.4.24. (7)

0 1

iΓ

∫

Γ

cot z

z8 − z6 − z4 + z2
dz =?

13.4.25. (4)

1

2πi

∫

|z|=5

tan z dz =?

13.4.4 Applications

Evaluation of series

13.4.26. (5)
Use residues to calculate

∞∑

k=1

1

k2 − 1
4

. Check your result using

elementary methods.

13.4.27. (5)

∞∑

k=0

1

k2 + k + 1
=?

(The result should not contain any complex number!)

13.4.28. (5)
Use residue calculus of the function

π cot(πz)

z2
to prove that

∞∑

k=1

1

k2
=
π2

6
.
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13.4.29. (5)

∞∑

k=1

1

k4
=?

∞∑

k=1

1

k2 − 1
4

=?
∞∑

k=1

1

k2 + 1
=?

13.4.30. (5)
∞∑

k=−∞

1

2k2 − 1
=?

13.4.31. (5)
Let Nk be the square with vertices ±(k+ 1

2 )± (k+ 1
2 )i. What is

1

2πi

∫

Nk

π cotπz

z2
dz?

What identity results if we let k →∞?

Evaluation of integrals

13.4.32. (4)
∫ ∞

0

dx

x7 + 1
=?

(Simplify as much as possible.)

13.4.33. (4)
Let a ∈ (0, 1).

∫ ∞

0

xα

x2 + 1
dx =?

13.4.34. (6)
∫ ∞

0

cosx

x2 + 1
dx =?

13.4.35. (7)

∫ ∞

0

dx

x3 + 1
=?

∫ ∞

0

log x

x2 + x+ 1
dx =?

∫ ∞

0

log2 x

x2 + 1
dx =?
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13.4.36. (6)
∫ ∞

0

log x

x3 + 1
dx =?

13.4.37. (6)
∫ ∞

0

log x

x2 − 1
dx =?

13.4.38. (5)
∫

|z|=2

dz

(z4 + z2) sin z
=?

13.4.39. (5)
∫

|z|=2

dz

(z2 + 1) sin z
=?

13.4.40. (9)
a)

∞∫

0

cosx2dx =? b)

∞∫

−∞

sin(3x2 + 1)dx =?

13.4.41. (7)
∞∫

−∞

eαt

1 + et
dt =? (0 < α < 1)

13.4.42. (7)
i∞∫

−i∞

coshAz

(z + 1)(z + 2)
dz =? (A > 0)

13.4.43. (5)
∞∫

−∞

x4 − 1

x6 − 1
dx =?

13.4.44. (9)
π/2∫

0

log sinxdx =?

13.4.45. (7)
∞∫

−∞

(x− 3) cosx

x2 − 6x+ 109
dx =?
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13.4.46. (6)
a)

∞∫

0

cos ax

x2 + a2
dx (a > 0) b)

∞∫

0

x sinx

x2 + a2
dx

13.4.47. (6)

∫ ∞

0

√
x

x3 + 1
dx =?

∫ ∞

−∞

e−it

x4 + 1
=?

∫ ∞

0

sinx

x
dx =?

13.4.48. (7)
Determine for any a > 0 the value of the integral

1

2πi

∫

|z|=2

aξ

1− ξ2 dξ.

13.4.49. (7)
σ+i∫

σ−i

ztz

z2 + 1
dz =? (σ > 0, 0 < t < 1)

13.4.50. (5)
a)

∫

C(π,1)

z

sin z
dz =? b)

∫

C(πi,1)

ez

(z − πi)2 dz =?

13.4.51. (5)

a)

∫

|z−i|=1

eiz

1 + z2
dz =? b)

∫

|z−π|=1

ez

sin2 z
dz =? c)

∫

|z−2πi|=1

1

ez − 1
dz =?

d)

∫

|z|=π

ez

cos z − 1
dz =?

13.4.52. (5)
What residues are possible for f ′/f at z0 if f has an isolated

singularity in that point?

13.4.53. (6)
Let Γr,R,ε be the curve in the figure, where R is large, r is

small and ε is much smaller than r. What results from the following limit?

lim
R→∞

lim
r→+0

lim
ε→+0

1

2πi

∫

Γr,R,ε

log z

z2 + 1
dz
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r

R

ε

13.4.54. (5)

1

2π

∫ 2π

0

(eit + e−it)ndt =?

13.4.55. (7)
Let a > 0. Determine

∫

Re z=0

az

z2 − 1
dz.

13.4.56. (4)
a)

∫

|z|=2

z10

(z − 1)7
dz =? b)

∫

|z|=21

1

z(z − 1) . . . (z − 20)
dz =?

13.4.57. (9)
Assume that the Dirichlet series f(s) =

∞∑

n=1

an
ns

absolutely con-

verges for Re s ≥ 1 and let X > 0 be real. Find the following integrals:

lim
h→∞

1

2πi

∫

Re s=1,| Im s|≤h
f(z)

Xs

s

1

2πi

∫

Re s=1

f(z)
Xs

s2

1

2πi

∫

Re s=1

f(z)
Xs

s(s+ 1)

13.4.5 The argument principle and Rouché’s theorem

13.4.58. (3)
How many zeros does the function cos z = 2z3 have in the unit

disc?
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13.4.59. (3)
How many zeros do the functions have on the given domain?

(a) sin z = 2z2, |z| < 1
(b) z4 + z3 − 4z + 1 = 0, 1 < |z| < 2
(c) z6 − 6z + 10, |z| > 1.

13.4.60. (3)
Let |a| = 3. Find the number of zeros of z4 + z3 + az − 1 in the

domain 1 < |z| < 2.

13.4.61. (3)
How many zeros does 2z + 3z2 − z have in the unit disc?

13.4.62. (5)
Prove the fundamental theorem of algebra from Rouché’s theo-

rem.

13.4.63. (4)
Prove that azn+3z+1 has a root in the unit disc for any a ∈ C.

13.4.64. (5)
Let a ∈ C, |a| < 1, n ∈ N. Show that (z − 1)nez = a has exactly

n solutions in the half-plane Re z > 0.





Chapter 14

Conformal maps

14.1 Fractional linear transformations

14.1.1. (4)
(a) Prove that (z1, z2, z3) :=

z1 − z3
z2 − z3

is real if and only if z1, z2

and z3 are on a line.

(b) Prove that the cross-ratio (z1, z2, z3, z4) :=
z1 − z3
z2 − z3

:
z1 − z4
z2 − z4

is real if

and only if z1, z2, z3 and z4 are on a circline.

14.1.2. (5)
Prove that a map that preserves the cross-ratio is necessarily a

fractional linear transfromation.

14.1.3. (3)
Show that the map 1/z preserves cross-ratio, i.e. ( 1

z1
, 1
z2
, 1
z3
, 1
z4
) =

(z1, z2, z3, z4). Find other maps with this property.

14.1.4. (5)
Show that if a map takes even one circle to a circle, then it is a

fractional linear transformation.

14.1.5. (6)
Assume that fn ∈ O(D) and fn → f ( 6= const.) uniformly on

D. Show that if for all n there is a circline Kn whose image under fn is a
circline, then f takes all circlines to circlines.

14.1.6. (7)
What are the finite subgroups of the group of fractional linear

transformations?

14.1.7. (7)
What fractional linear transformations map the right half-plane

to itself?

173



174 14. Conformal maps

14.1.8. (3)
What is the geometric meaning of the imaginary part of the cross

ratio of four points?

14.1.9. (3)
Prove using the behavior of the function at the points 0, ∞ and

1 that Re z+1
z−1 < 0, if |z| < 1.

14.1.10. (3)
Prove using the behavior of the exponent at the points 0, ∞ and

1 that ∣
∣
∣e

z+1
z−1

∣
∣
∣ < 1 (|z| < 1).

14.1.11. (5)
(a) Prove that for all f ∈ C[z] one can find g ∈ C[z] with the

property that g has no roots inside the unit disc and |g(z)| = |f(z)| for
|z| = 1.

(b) Prove the same for meromorphic functions on C. For all meromorphic
f one can find a meromorphic g which has no poles or zeros inside the unit
disc and which satisfies |g| = |f | on the unit circle.

14.1.12. (5)
What are the possible poles and zeros of a fractional linear

transformation that maps the unit circle to itself?

14.1.13. (5)
What are the meromorphic functions f that satisfy |f(z)| = 1

for |z| = 1?

14.1.14. (7)
Let f be regular on the disc |z| < 1 + ε except for finitely many

poles. Assume that f(0) = 1 and that the zeros and poles of f inside the unit
disc listed with multiplicity are ̺1, ̺2, . . . , ̺n, and p1, p2, . . . , pm respectively.
Prove that

1

2π

∫

|z|=1

log |f(z)| · |dz| = log

∣
∣
∣
∣

p1p2 . . . pm
̺1̺2 . . . ̺n

∣
∣
∣
∣
.

(If there are no zeros or poles, then the respective product, that is empty, is
1.)

14.1.15. (6)
If the zeros of the regular f : S(0, 1) → S(0, 1) function are

|ak| < 1 complex numbers (possibly infinitely many), then

|f(0)| ≤
∣
∣
∣
∣
∣

∞∏

i=0

ai

∣
∣
∣
∣
∣
.
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14.1.16. (5)
Prove the following statements.

(a) If T (z) is a fractional linear transformation, then T has a fixed point
in C ∪∞.

(b) Given zj , wj (j = 1, 2, 3) with (zk 6= zj , wk 6= wj), then there is a
unique T fractional linear transformation such that T (zj) = wj .

(c) Describe the fractional linear transformations with 1, 2 or more fixed
points.

14.1.17. (4)
(a) Prove that all fractional linear transformations can be ex-

pressed as a composition of translations, rotations, dilations and conjugate
inversion (inversion with respect to the unit circle followed by conjugation).

(b) Derive from this the basic properties of fractional linear transforma-
tions, they are bijective conformal maps of the Riemann sphere to itself that
preserve the cross-ratio and circlines.

14.1.18. (5)
Function f is regular on the disc |z| < 1 + ε. Show that

log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(eit)| dt.

14.1.19. (5)
Show that there is exactly one conformal map which

(a) takes a given circle C to another circle C ′ in such a way that it takes
3 prescribed points on C to 3 prescribed points on C ′;

(b) takes a given circle C to another circle C ′ in such a way that it takes
a prescribed point on C to a prescribed point on C ′ and a prescribed point
inside C to a prescribed point inside C ′.

14.1.20. (5)
Let H be the upper half-plane. Prove that

Aut(H) =

{

T (z) =
az + b

cz + d
, a, b, c, d ∈ R

}

!

If an element of Aut(H) is represented by a matrix

(
a b
c d

)

, what matrices

correspond to the same map?

14.2 Riemann mapping theorem

14.2.1. (5)
Give a biholomorphic map from D1 = {z : | Im z| < 1} to

D2 = D1 \ (−∞, 0].
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D1 D2

14.2.2. (7)
Find a conformal bijection between the unit disc and the domain

in the figure.

c)b)a)

1

2
−

1

2
−

1

2

1

2

−

1

2
i

1

2
i

14.2.3. (7)
Find conformal bijections between the unit disc and the domains

in the figure.

disk with 2 cuts

disk

sector of disk disk with cut strip half strip

half plane with cuthalf planeangle domainplane with cut

14.2.4. (9)
Let D1 be the green domain in the figure, and D2 the union of

the green and blue parts. Show that if f is regular on D1 and for all functions
g that are regular on D2 f · g has an antiderivative on D1, then f can be
analytically continued to D2.
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D2

D1

Related problem: 13.2.10

14.2.5. (7)
Give a biholomorphic map from D1 = {z : | Im z| < 1} to

D2 = {z : |z| < 1 and |z − 1− i| > 1}.

14.2.6. (6)
Describe explicitly the comformal map in the Riemann mapping

theorem for the following domains:

a) {z : −π
2
< arg z <

π

2
} b) {z : |z| < 1, Im z > 0}

c) {z : |z| < 1, or Im z < 0} d) C\[0, 1]

14.2.7. (5)
Let Aut(D) be the group of biholomorphic functions ofD to itself.

Show that if f : D ↔ D′ is a conformal bijection, then Aut(D) ∼= Aut(D′).

14.2.8. (5)
Let D1 = {z : 0 < Re z < 1, 0 < Im z} and D2 = {z : Re z >

0, Im z > 0}. Give a formula for a biholomorphic map D1 → D2.

14.2.9. (7)
Number the domains cut by the coordinate axes and the unit

circles by Roman numerals, as in the figure. Describe all biholomorphisms
that permute these domains.

I.
III. IV.

V. VI.

II.

VIII.VII.

What possible permutations arise?
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14.2.10. (5)
Find conformal bijections from the domains in the figore and the

upper half-plane Imw > 0!
(a) {z : |z| > 1}\[−2,−1]
(b) C\[−1, 0]\[1,∞)
(c) {z : |z| < 1, Im z > 0}\

[
0, i2

]

(d) {z : 0 < arg z < π/2, |z| > 1}\[1 + i,∞)

14.2.11. (7)
Let F ( G complex domains f : S(0, 1) ↔ F , g : S(0, 1) ↔ G

conformal bijections such that f(0) = g(0). Show that |f ′(0)| < |g′(0)|.

14.3 Schwarz lemma

14.3.1. (5)
Let C be a circle, and p a point outside of C. Show that if f

is a fractional linear transformation such that f(C) = C and f(p) = p, then
|f ′(p)| = 1.

14.3.2. (6)
For all D ⊂ C domain and a ∈ D there is a unique r(a,D)

radius such that there is a conformal injection f : D ↔ S
(
0, r(a,D)

)
, f(a) =

0, f ′(a) = 1.

14.3.3. (6)
Let F 6⊆ G and D be complex simply connected domains a ∈ F ,

and f : F ↔ D, g : G↔ D conformal bijections such that f(a) = g(a). Show
that |f ′(a)| > |g′(a)|.

14.3.4. (5)
Let P = {z : Re z > 0} be the right half-plane f : P → P regular

and f(1) = 1. Prove that |f ′(1)| ≤ 1.

14.3.5. (7)
Let T , R ∈ Aut

(
S(0, 1)

)
and T (a) = R(a) = 0. Prove that

T = cR for some |c| = 1. Describe Aut
(
S(0, 1)

)
using this observation.

14.3.6. (7)
Assume that f is regular on the unit disc and satisfies |f(z)| < 1.

Show that
|f ′(z)|

1− |f(z)|2 ≤
1

1− |z|2 .

14.3.7. (6)
Let the roots of the regular function f : S(0, 1) → S(0, 1) be

a1, . . . , an. Show that

|f(z)| ≤
n∏

i=1

∣
∣
∣
∣

ai − z
1− aiz

∣
∣
∣
∣

(|z| < 1).
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14.3.8. (7)
Assume that f ∈ O(|z| < 1) has image Re z > 0, and f(0) = 1.

Show that
1− |z|
1 + |z| ≤ |f(z)| ≤

1 + |z|
1− |z| .

14.3.9. (7)
Let w : S(0, 1)→ S(0, 1) be regular and let |a| < 1. Show that

a)

∣
∣
∣
∣
∣

w(z)− w(a)
1− w(a)w(z)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

z − a
1− āz

∣
∣
∣
∣

b) |w′(a)| ≤ 1− |w(a)|2
1− |a|2 .

14.3.10. (7)
Let w : S(0, 1)→ S(0, 1) be regular and w(α) = 0. Show that

(a) |w(z)| ≤
∣
∣
∣
∣

z − α
1− ᾱz

∣
∣
∣
∣
; (b) |w′(a)| ≤ 1− |α|2.

14.3.11. (6)
Let a1, a2, . . . be a sequence of complex numbers such that

|ak| < 1 and Re ak >
1
2 for all k. Let

z0 = 0, zn+1 =
zn + an
1 + anzn

.

Prove that an → 1.
(based on IMC 2011/6)

14.3.12. (9)
Let D = {z ∈ C : |z| < 1} be the complex unit disc and let

0 < a < 1 be a real number. Suppose that f : D → C is a holomorphic
function such that f(a) = 1 and f(−a) = −1.
(a) Prove that

sup
z∈D

∣
∣f(z)

∣
∣ ≥ 1

a
.

(b) Prove that if f has no root, then

sup
z∈D

∣
∣f(z)

∣
∣ ≥ exp

(
1− a2
4a

π

)

.

(Schweitzer competition, 2012)

Solution→

14.4 Caratheodory’s theorem

14.4.1. (10)
Is there a Caratheodory type theorem for conformal bijections

between domains that are not simply connected and whose boundaries are a
union of finitely many Jordan curves?
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14.4.2. (9)
Show that domains r1 < |z| < R1 and r2 < |z| < R2 are

biholomorphic if and only if
R1

r1
=
R2

r2
.

14.5 Schwarz reflection principle

14.5.1. (5)
Let f be a holomorphic function on r < |z| < 1 which extends

continuously to the unit circle and satisfies (a) f(z) ∈ R for |z| = 1 (b)
f 6= 0, and |f(z)| = 1 for |z| = 1. Prove that f has an analytic continuation
to r < |z| < 1

r .

14.5.2. (5)
Let f be holomorphic and non-vanishing on a convex domain D.

Assume that the boundary of D contains the real interval I and that f has
a continuous extension to the interior of I where it satisfies |f | = 1. Show
that f can be analytically continued to D = {z : z ∈ D}.



Part II

Solutions
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Chapter 15

Hints and final results

1.0.1. Calculate the truth table

A ∨ (B =⇒ A)

Answer:

A B A ∨ (B ⇒ A)
I I I
I N I
N I N
N N I

←Back

1.0.4. Let H ⊆ R be a subset. Formalize the following statements and their
negations. Is there a set with the given property?

1. H has at most 3 elements.

2. H has no least element.

3. Between any two elements of H there is a third one in H.

4. For any real number there is a greater one in H.

Answer:

1. ∀ x, y, z, w ∈ H x = y ∨ x = z ∨ x = w ∨ y = z ∨ y = w ∨ z = w

2. ∀ x ∈ H ∃ y ∈ H y < x

3. ∀ x, y ∈ H x < y ∃ z ∈ H x < z < y

4. ∀ x ∈ R ∃ y ∈ H x < y

183
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←Back

1.0.8. How many sets H ⊂ {1, 2, . . . , n} do exist for which ∀x ([(x ∈ H) ∧
(x+ 1 ∈ H)]⇒ x+2 ∈ H)?

Hint: Add one to the beginning of the set! j(n+ 1) = j(n) + j(n− 1) + 1

←Back

1.0.14. Let NOR(x, y) = ¬(x ∨ y). Using only the NOR operation we can
create several expressions, e.g., NOR(x,NOR(NOR(x, y),NOR(z, x))).

(a) Show that we can generate all logic functions of n variables in this
way!

(b) Show another example of a logic function of 2-variable NOR with this
generating property!

A Texas Instruments SN7402N integrated circuit, with 4 independent NOR logic gates

Hint: It is sufficient to express the operations ∧, ∨ and ¬.

x ∧ y = NOR(NOR(x, x),NOR(y, y); x ∨ y = NOR(NOR(x, y),NOR(x, y);

¬x = NOR(x, x).

Another “universal” operation is NAND(x, y) = ¬(x ∧ y). (The integrated
circuit SN7400N contains four NAND gates.)

←Back

1.0.22. Prove the so-called binomial theorem:

(a+ b)n =

(
n

0

)

an +

(
n

1

)

an−1b+ · · ·+
(
n

n

)

bn.

Hint: Use exercise 1.0.21 and induction.
←Back

1.0.23. Which one is bigger? 6399 or 6389 + 9 · 6388?
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Hint: Use the binomial theorem.
←Back

1.0.26. Let A = {1, 2, ..., n} and B = {1, ..., k}.
1. How many different functions f : A→ B do exist?

2. How many different injective functions f : A→ B do exist?

3. How many different functions f : A0 → B do exist, where A0 ⊂ A is
arbitrary?

Answer:

1. |B||A| = kn.

2.
(
k
n

)
· n! = k(k − 1) · · · (k − n+ 1).

3. (|B|+ 1)|A| = (k + 1)n.

←Back

1.0.32. Is it true for all triples A,B,C of sets that
(a) (A△B)△C = A△(B△C);
(b) (A△B) ∩ C = (A ∩ C)△(B ∩ C);
(c) (A△B) ∪ C = (A ∪ C)△(B ∪ C)?

Answer: (a) yes; (b) yes; (c) no.

←Back

1.0.44. Prove that tan 1o is irrational!

Hint: For which angle do we know that its tangent is irrational?

←Back

1.0.45. At least how many steps do you need to move the 64 stories high
Hanoi tower?

Towers of Hanoi
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Hint: Induction; ln+1 = 2ln + 1.

←Back

1.0.47. For how many parts the space is divided by n planes if no 4 of them
have a common point and no 3 of them have a common line?

Hint: Use the result of exercise 1.0.46.
←Back

1.0.55. Prove that the following identity holds for all positive integer n:

√
n ≤ 1 +

1√
2
+ . . .+

1√
n
< 2
√
n.

Hint: The trivial estimate gives the lower bound, the upper bound can be
obtained by induction.

←Back

1.0.68. Let a, b > 0. For which x is the expression
a+ bx4

x2
minimal?

Hint: Apply AM-GM.

←Back

1.1.9. Show that no ordering can make the field of complex numbers into an
ordered field.

Hint: Show that x2 ≥ 0 holds in every ordered field.

←Back

1.1.12. Does the ordered field of rational functions satisfy the Archimedean
axiom?

Hint: The function x/1 is greater than all positive integers.

←Back

1.1.13. Given an ordered field R and a subfield Q show that if

(∀a, b ∈ R)
(

(1 < a < b < 2)⇒
(

(∃q ∈ Q) (a < q < b)
))

,

then R satisfies the Archimedean axiom.
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Hint: Suppose that some element L ∈ R is greater than all positive integers.
Let a = 1 + 1

2L and b = 1 + 1
L .

←Back

1.1.14. In which ordered fields can the floor function be defined?

Answer: In Archimedean fields.
←Back

1.1.15. Does the ordered field of rational functions satisfy the Cantor axiom?

Hint: Let In =
[
n; xn

]
.

←Back

1.1.18. Which axioms of the reals are satisfied for the set of rational numbers
(with the usual operations and ordering)?

Answer: Only the Cantor axiom is not satisfied.

←Back

1.1.37. Does the ordered field of the rational functions satisfy the completeness
theorem: all non-empty set has a supremum?

Hint: Consider R as a subset of the field of the rational functions.

Solution→ ←Back

1.1.38. Prove that if an ordered field satisfies the completeness theorem, then
the Archimedean axiom holds.

Hint: What is the supremum of the set of positive integers?

←Back

1.1.39. Prove that if an ordered field satisfies the completeness theorem, then
the Cantor axiom holds.

Hint: Suppose that [a1, b1] ⊃ [a2, b2] ⊃ is a descending chain of closed inter-
vals. Show that sup{a1, a2, . . .} is contained by all of the intervals.

←Back
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1.1.40. Define recursively the sequence xn+1 = xn
(
xn + 1

n

)
for any x1. Show

that there is exactly one x1 for which 0 < xn < xn+1 < 1 for any n.
(IMO 1985/6)

Hint: Let f1(x) = x and fn+1(x) = fn(x)
(
fn(x) +

1
n

)
.

(a) For the uniqueness prove that if x < y and the sequences (fn(x)) and
(fn(y)) are increasing, then fn(y)− fn(x) > n(y − x).
(b) Let an and bn be the real numbers for which fn+1(an) = fn(an) and
fn(bn) = 1. Apply Cantor’s axiom to the intervals [an, bn].

←Back

2.1.12. Show that every convergent sequence has a minimum or a maximum.

Hint: Show that if the set A = {an : n ∈ N} has no maximum, then the
sequence an has a subsequence ank

→ supA.

←Back

2.1.43. Prove that if (an + bn) is convergent and (bn) is divergent, then (an)
is also divergent.

Hint: It is enough to show that if (cn) is convergent and (dn) is divergent,
then (cn + dn) is also divergent.

←Back

2.1.51. Assume that an → a and a < an for all n. Prove that an can be
rearranged to a monotone decreasing sequence.

Hint: Study the sequence bn := max{ak : k ≥ n}.
←Back

2.2.11. Determine the limit of the following recursively defined sequence!
a1 = 0, an+1 = 1/(1 + an) (n = 1, 2, . . .).

Hint: See the 2.2.9 exercise.
←Back

2.4.10. Calculate the following:

lim
n100

1, 1n
=?
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Hint: See the solution of 2.2.4.
←Back

2.4.19. Let a > 0.
lim n
√
n+ an =?

Hint: See the solution of 2.4.6.
←Back

2.4.22. Is

xn =
sin 1

2
+

sin 2

22
+ . . .+

sinn

2n

convergent?

Hint: Check the Cauchy criterion.

←Back

2.8.15. Show that if |an+1 − an| < 1
n2 , then (an) is convergent.

Hint: Use the idea of 2.7.2.
←Back

3.2.20. Assume that g(x) = lim
t→x

f(t) exists in every point. Prove that g(x) is

continuous.

Hint: f continuous ⇔ image of convergent sequence is convergent + diag-
onal method.

←Back

5.3.5. Find the arclength of the curve r(θ) = a+ a cos θ, (θ ∈ [π/4, π/4]).

Hint: Use the formula of arclength in polar coordinates.

←Back

5.4.1. If γ : [0, 1] → R2 is a continuous curve whose image contains [0, 1] ×
[0, 1], can γ be of bounded variation?

Hint: No. Consider a 1/n-grid on the unit square. For the partition corre-
sponding to the preimages of the vertices of the grid has variation > n2 ·1/n.

←Back

5.4.2. Prove that f : [0, 1]→ R is of bounded variation if and only if it is the
sum of two monotonic functions.
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Hint: The total variation function minus f is monotone.

←Back

5.5.1. Let f be continuous, g(x) =







c if x < a+b
2

d if x > a+b
2

e if x = a+b
2

.

∫ b

a

f dg =?

Hint: f(a+b2 )(d− c).
←Back

5.6.6. Is the following integral convergent?

∫ 3

0

cos t

t
dt

Hint: cos t
t > 1/2

t . Or: cos t
t >

1− t2

/2

t . Or: Integration by parts 1/t =
u′, cos t = v leads to a proper integral.

←Back

6.0.31. Convergent or divergent?

∞∑

n=2

1

n log n

Hint: Use the 6.0.30 condensation lemma.
←Back

6.0.32. Let ε > 0. Convergent or divergent?

∞∑

n=2

1

n(log n)1+ε

Hint: Use the 6.0.30 condensation lemma.
←Back
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8.1.31. lim(0,0)(x
2 + y2)x

2y2 =?

Answer: 1
←Back

10.2.3. For what functions f : R2 → R will the following statement be true?
If g is a simple, closed rectifiable curve in R2, then

∫

g

x2y3 dy =

∫

g

f(x, y) dx.

Answer: f(x, y) = − 1
2xy

4 + c(x) with some differentiable function c(x).

←Back

10.3.11. Is H = R3 \ {(cos t, sin t, et) : t ∈ R} simply connected?

Answer: Yes.
←Back

11.1.2. What is the smallest possible cardinality of an infinite σ-ring?

Answer: Continuum.
←Back

11.6.3. True or false? If f is absolutely continuous and strictly increasing on
[a, b], then its inverse is also absolutely continuous.

Answer: No.
←Back

12.0.1.
(
n

0

)

+

(
n

3

)

+

(
n

6

)

+ . . . =?

Hint: Expand (1 + x)n by the binomial theorem.

←Back

12.0.2. Let a, b, c ∈ C. What is the geometric interpretation of

1

2
Im
(

(c− a) · (b− a)
)

?
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Answer: The signed area of the triangle (a, b, c).

←Back

12.0.4. What are the product, the sum and the sum of squares of the complex
mth roots of unity?

Hint: Use the fact that these are exactly the roots of xm − 1.

←Back

12.0.10. Let w(z) = 1
2

(
z + 1

z

)
be the so-called Zhukowksy map. What is the

image of
(a) the unit circle?
(b) the interior of the unit circle?
(c) the exterior of the unit circle?
(d) the circles with center 0?
(e) the lines passing through 0?

Answer: (a): The line segment [−1, 1].
(b) and (c): The complement of [−1, 1].
(d): Ellipses with foci −1, 1. (The unit circle is mapped to the line segment

[−1, 1].)
(e): Hyperbolas with foci −1, 1. (The image of the real axis is the union

of the rays (−∞,−1] and [1,∞); the imaginary axis is mapped onto itself.)

←Back

13.1.7. Let a, b ∈ C and |b| < 1. Prove that

1

2π

∫

|z|=1

∣
∣
∣
∣

z − a
z − b

∣
∣
∣
∣

2

| dz| = |a− b|
2

1− |b|2 + 1.

Hint: Transform it to a contour integral, then apply Cauchy’s formula.

Solution→ ←Back

13.1.9. The function f(z) is holomorphic in the interior of the unit disc
(|z| < 1) and |f | < 1. How large can |f ′′′(0)| be?

Answer: 6.
←Back

13.3.1. An entire function f(z) satisfies |f(1/n)| = 1/n2 for n = 1, 2, . . ., and
|f(i)| = 2. What are the possible values of |f(−i)|?

Hint: Apply the Unicity Theorem to g(z) = f(z) · f(z̄).
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Solution→ ←Back

13.3.2. Show that if f takes only real values on the real and imaginary axes,
then f is even.

Hint: Consider the entire functions f(z) and f(−z).
←Back





Chapter 16

Solutions

1.0.12. Prove that the implication is left distributive with respect to the
disjunction.

Solution: We have to prove
(

A⇒ (B ∨ C)
)

= (A⇒ B) ∨ (A⇒ C).

By the basic properties of the ∨ operation (idempotency, commutativity,
associativity) and the identity (X ⇒ Y )⇒ ¬X ∨ Y ,

(

A⇒ (B ∨ C)
)

= ¬A ∨ (B ∨ C) = (¬A ∨ ¬A) ∨ (B ∨ C)
= (¬A ∨B) ∨ (¬A ∨ C) = (A⇒ B) ∨ (A⇒ C).

←Back

1.0.42. Prove that
(

1− 1

4

)(

1− 1

9

)

. . .

(

1− 1

n2

)

=
n+ 1

2n
.

Solution: Induction: The statement is true for n = 1, and

an+1 =

(

1− 1

(n+ 1)2

)

an,

assuming that the statement is true for an, we get

an+1 =

(

1− 1

(n+ 1)2

)
n+ 1

2n
=

n+ 2

2n+ 2
.

195
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←Back

1.0.49. Prove that the following identity holds for all positive integer n:

1

1 · 3 +
1

3 · 5 + . . .+
1

(2n− 1) · (2n+ 1)
=

n

2n+ 1
.

Solution: Induction on n. For n = 1 we have 1
1·3 = 1

3

√
. Suppose now that

the identity holds for n, then for n+ 1 we have

L.H.S. =
1

1 · 3 +
1

3 · 5 + . . .+
1

(2n− 1) · (2n+ 1)
+

1

(2n+ 1) · (2n+ 3)

=
n

2n+ 1
+

1

(2n+ 1) · (2n+ 3)
by the ind. hyp.

=
n(2n+ 3) + 1

(2n+ 1) · (2n+ 3)
=

2n2 + 3n+ 1

(2n+ 1) · (2n+ 3)
=

n+ 1

2(n+ 1) + 1
,

since 2n2 + 5n+ 1 = (2n+ 1)(n+ 1).

Solution 2: Since 1
(2n−1)·(2n+1) = 1

2

(
1

2n−1 − 1
2n+1

)

, we get a telescopic

sum, therefore

2 · L.H.S. =
(
1

1
− 1

3

)

+

(
1

3
− 1

5

)

+ · · ·+
(

1

2n− 1
− 1

2n+ 1

)

= 1− 1

2n+ 1
=

2n

2n+ 1
.

←Back

1.0.51. Prove that the following identity holds for all positive integer n:

13 + . . .+ n3 =

(
n · (n+ 1)

2

)2

.

Solution: Induction on n. For n = 1 both sides equal to 1. If the statement
holds for n, then for n+ 1 we have

13 + . . .+ n3 + (n+ 1)3 =

(
n · (n+ 1)

2

)2

+ (n+ 1)3 =

= (n+ 1)2
(
n2

4
+ n+ 1

)

= (n+ 1)2
(n+ 2)2

4
=

(
(n+ 1)(n+ 2)

4

)2

.

Solution 2.
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1

2

3

4 8

6

4

2 3

6

9

12 16

12

8

4

The sum of the numbers in the n-th
square is (

∑
i)2, the sum of the numbers

connected with curves is n2, and we have
n− 1 on one level and we also have n2 in
the lower right corner.

←Back

1.0.56. Show that for all positive integer n ≥ 6 a square can be divided into
n squares.

Solution: Dividing a square into for ones of half the side we see that if a
square can be divided into n squares, then it can also be divided into n + 3
squares. On the other hand we have the solutions for 1, 6 and 8:

1 6 8 2k + 2, 2k + 5

k

(The right-most picture shows another possible construction.)

←Back

1.0.66. Prove that if a, b, c > 0, then the following inequality holds

a2

bc
+
b2

ac
+
c2

ab
≥ 3.

Solution: Apply the AM-GM inequality to the terms on the left-hand side:

a2

bc +
b2

ac +
c2

ab

3
≥ 3

√

a2

bc
· b

2

ac
· c

2

ab
=

3
√
1 = 1.

←Back

1.0.74. Which rectangular box has the greatest volume among the ones with
given surface area?

Solution: A = 2(ab+ac+ bc) = 6ab+ac+bc3

sz-m
≥ 6

3
√
a2b2c2 = 6V 2/3. Equality

can occur only for ab = ac = bc, i.e. for the case of the cube.
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←Back

1.0.77. Calculate the maximum value of the function x2 · (1−x) for x ∈ [0, 1].

Solution: By the AM-GM inequality,

3
√

x · x · (2− 2x)
AM-GM
≤ x+ x+ (2− 2x)

3
.

←Back

1.0.78. Prove that the cylinder with the least surface area among the ones
with given volume V is the cylinder whose height equals the diameter of its
base.

Solution:
A

3π
=

2r2 + rh+ rh

3

AM-GM
≥ 3

√
2r2 · rh · rh =

3

√

2
V 2

π2
.

←Back

1.0.79. Prove that n! <

(
n+ 1

2

)n

.

Solution:
n
√
n!

AM-GM
≤

(
n+1
2

)

n
for n > 1.

←Back

1.0.83. Prove that for any sequence a1, a2, . . . , an of positive real numbers,

1
1
a1

+
2

1
a1

+ 1
a2

+
3

1
a1

+ 1
a2

+ 1
a3

+. . .+
n

1
a1

+ 1
a2

+ . . .+ 1
an

< 2(a1+a2+. . .+an).

(KöMaL N. 189., November 1998)

Solution: Applying the weighted AM-HM inequality,

n∑

k=1

k
1
a1

+ 1
a2

+ . . .+ 1
ak

=

n∑

k=1

2

k + 1
· 1 + 2 + . . .+ k

1
a1

+ 2
2a2

+ . . .+ k
kak

≤

≤
n∑

k=1

2

k + 1
· 1 · a1 + 2 · 2a2 + . . .+ k · kak

1 + 2 + . . .+ k
=

=

n∑

k=1

4

k(k + 1)2

k∑

i=1

i2ai =

n∑

i=1

i2ai

n∑

i=k

4

k(k + 1)2
<

n∑

i=1

i2ai

n∑

i=k

2(2k + 1)

k2(k + 1)2
=

=

n∑

i=1

i2ai

n∑

i=k

(
2

k2
− 2

(k + 1)2

)

<

n∑

i=1

i2ai

(
2

i2
− 2

(n+ 1)2

)

<

<

n∑

i=1

i2ai ·
2

i2
= 2

n∑

i=1

ai.
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Remark: The constant 2 on the right-hand side is sharp. If ai =
1
i and n is

sufficiently large, the ratio between the two sides can be arbitrarily close to
1.

←Back

1.1.3. Using the field axioms prove the following statement: (−a)(−b) = ab.

Solution: a+ (−1) · a = 1 · a+ (−1) · a = (1 + (−1)) · a = 0, because of the
definition of 1 and −1 and distributivity. Therefore the uniqueness of the
additive inverse implies (−1) · a = −a. =⇒ (−a)(−b) = ((−1) · a)((−1) · b),
which further equals ((−1) · (−1))ab because associativity of multiplication
and commutativity. Finally it is easy to see that (−1) · (−1) = 1.

←Back

1.1.37. Does the ordered field of the rational functions satisfy the completeness
theorem: all non-empty set has a supremum?

Solution: No.
Denote by R(x) the ordered field of the rational functions. Mapping the

real numbers to the constant functions, R can be considered as an ordered
subfield of R(x). We show that R is non-empty, bounded from above but it
has no smallest upper bound.

R is obviously non-empty. The function x =
x

1
∈ R(x) is an upper bound

of R because for any a ∈ R we have x − a =
x− a
1

> 0. Hence, R is a

non-empty subset of R(x) and it is bounded from above.
Now we show that R has no smallest upper bound. If K ∈ R(x) is an

upper bound, then K − 1 is also an upper bound since for every a ∈ R we
have a+ 1 ∈ R⇒ a+ 1 ≤ K ⇒ a ≤ K.

←Back

1.1.42. Prove that (1 + x)r ≤ 1 + rx if r ∈ Q, 0 < r < 1 and x ≥ −1.

Solution: r = p/q, q
√

(1 + x)p · 1q−p
AM-GM
≤ p(1+x)+(q−p)

q .

←Back

2.1.18. Is it true that if xn is convergent, yn is divergent, then xnyn is
divergent?

Solution: No, for example xn = 1
n2 and yn = n.

←Back

2.1.27. Is there a sequence of irrational numbers converging to (a) 1, (b)
√
2?

Solution: (a) 1 +
√
2
n (b)

(
1 + 1

n

)√
2.



200 16. Solutions

←Back

2.1.30. Does a2n → a2 imply that an → a? And does a3n → a3 imply that
an → a?

Solution: (−1)n 6→ 1. But for a = 0 we have δan(ε) := δa3n(ε
3) if a > 0,

then |an − a| = |a3n−a3|
a2n+aan+a

2 ≤ |a3n−a3|
3(a/2)2 for n big enough.

←Back

2.1.47. Let ak 6= 0 and p(x) = a0 + a1x+ . . .+ akx
k. Prove that

lim
n→+∞

p(n+ 1)

p(n)
= 1.

Solution: Simplify by a0n
k:

p(n+ 1)

p(n)
=

(
1 + 1

n

)k
+ a(n)

1 + b(n)
,

where a(n)→ 0 and b(n)→ 0.

←Back

2.1.54. Prove that if the sequence (an) has no convergent subsequence, then
|an| → ∞.

Solution: If the sequence |an| 6→ ∞, then it has a bounded subsequence. By
the Bolzano–Weierstrass theorem this subsequence has a convergent subse-
quence.

←Back

2.2.2. Prove that nn+1 > (n+ 1)n if n > 2.

Solution: Consider the inequality between the arithmetic and geometric

means for the numbers

n−1
︷ ︸︸ ︷

n+ 1, . . . , n+ 1,
√
n+ 1,

√
n+ 1.

←Back

2.2.3. Prove that
√
2 · 4
√
4 · 8
√
8 · . . . ·2n

√
2n < n+ 1.

Solution: an = 2bn , where bn = 1
2 + 2

4 + · · · + n
2n . It is easy to check by

induction that 2− bn = n+2
2n , therefore an < 4.

←Back

2.2.4. Prove that 2n > nk holds for all sufficiently (depending on k) large n.
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Solution: 2n >
(
n
k+1

)
if n > k + 1.

(
n
k+1

)
> 1

(k+1)! (n/2)
k+1 if n > 2(k + 1).

1
(k+1)! (n/2)

k+1 > nk if n > 2k+1(k+1)!. This estimate is not sharp: n
log2 n

>

k. E.g. for k = 10 it holds from n = 60.

←Back

2.2.10. Prove that for the sequence a1 = 1, an+1 = an +
1
an

we have a10001 >
100 (see the 2.2.9 exercise and its solution.)

Solution: an is monotone icreasing. Assume that an2+1 < n⇒ 1
ai
> 1

n ∀i ≤
n⇒ an2+1 > a1 + n2 1

n
∠ւ

←Back

2.3.1. Find a non-convergent sequence with exactly one limit point.

Solution: Merge the sequences 1/n and n.

←Back

2.3.5. Find a sequence such that the set of limit points of it is [0, 1].

Solution: List the elements of a countable dense subset of [0, 1]. (E.g. [0, 1]∩
Q.)

←Back

2.4.6. Calculate limn→∞
n
√
2n − n.

Solution:

2 =
n
√
2n > n

√
2n − n > n

√

2n − 2n−1 = 2
n

√

1

2
,

for n big enough. The RHS tends to 2 by 2.4.5, so the sandwich theorem
implies the result.

←Back

2.4.17.

lim
1

n(
√
n2 − 1− n)

=?

Solution:

1

n(
√
n2 − 1− n)

=
1

n(
√
n2 − 1− n)

√
n2 − 1− n√
n2 − 1− n

=

√

1− 1
n2 + 1

−1 ,

therefore lim 1
n(

√
n2−1−n) = −2.

←Back
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2.4.24. Is
n
√

n2 + cosn

convergent?

Solution: 1 < n
√
n2 + cosn <

n
√
n3 = ( n

√
n)

3 → 13 = 1.

←Back

2.5.19. Let a1 = 1, an+1 = an +
2

a2n
. Prove the existence of an n ∈ N, for

which an ≥ 10.

Solution: Suppose that ∀n an < 10. =⇒ a2n < 100 =⇒ 2
a2n

> 2
100 =⇒

an+1 = an + 2
a2n

> an + 2
100 . by induction we get

an+1 > a1 + n · 2

100
= 1 + n · 2

100
,

consequently for e.g.

n = 500 a501 > 1 + 500 · 2

100
= 11,

which contradicts to our assumption.

←Back

2.6.4. Prove that

(

1 +
1

n

)n+1

>

(

1 +
1

n+ 1

)n+2

,

in other words the sequence an =
(
1 + 1

n

)n+1
is strictly monotone decreasing.

Solution: equivalently
n+2

√
(

n

n+ 1

)n+1

· 1
a-g
<

(n+ 1)
(

n
n+1

)

+ 1

n+ 2
.

←Back

2.6.10. Calculate the limit of the sequence

an =

(
n+ 2

n+ 1

)n

.

Solution:

an

(

1 +
1

n+ 1

)

=

(

1 +
1

n+ 1

)n+1

→ e,

therefore an → e.
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←Back

2.7.1. The sequence an is monotone and it has a convergent subsequence.
Does it imply that an is convergent?

Solution: Yes, since we have an ank
→ a convergent subsequence and be-

cause of the monotonicity ∀ n > nk |an − a| ≤ |ank
− a|, therefore an → a.

←Back

2.8.6. Prove that
∞∑

n=1

1

n2
< 2.

Solution: 1
n2 <

1
(n−1)n and

∑∞
n=2

1
(n−1)n = 1 (telescopic sum).

←Back

2.8.8. Find a sequence an such that
∑
an is convergent, and an+1/an is not

bounded.

Solution: For example a2n = 1
n2 and a2n+1 = 1

n3 .

←Back

3.1.2. Show that the following functions are injective on the given set H,
and calculate the inverse.

1. f(x) =
x

x+ 1
, H = [−1, 1]; 2. f(x) =

x

|x|+ 1
, H = R.

Solution: f−1(y) = y
1−|y| , y ∈ (−1, 1).

←Back

3.1.6. Are the following functions injective on [−1, 1]?
a) f(x) =

x

x2 + 1
, b) g(x) =

x2

x2 + 1
.

Solution: a) Let x 6= y and suppose that f(x) = f(y), i.e.,

x

x2 + 1
=

y

y2 + 1
=⇒ x(y2+1) = y(x2+1) =⇒ x−y = (x−y)xy =⇒ 1 = xy,

since x − y 6= 0. On the other hand |x|, |y| ≤ 1, which can be satisfied only
for x = y = ±1 but equality was not allowed. Therefore f(x) is injective on
[−1, 1].

b) g(1) = g(−1), therefore g(x) is not injective on [−1, 1].
←Back
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3.4.2. (Brouwer fixed-point theorem; 1-dimensional case.) All f : [a, b] →
[a, b] continuous functions have a fixed point, i.e., an x, for which f(x) = x.

Solution: Apply the Bolzano–Darboux theorem to f(x)− x.
←Back

3.4.7. Prove that the polynomial x3 − 3x2 − x+ 2 has 3 real roots.

Solution: f(−1) = −1, f(0) = 2, f(2) = −4, f(4) = 14. By the Bolzano–
Darboux theorem there are at least 3 real roots.

←Back

4.4.3. Let a1 < a2 < . . . < an and b1 < b2 < . . . < bn be real numbers. Show
that

det








ea1b1 ea1b2 . . . ea1bn

ea2b1 ea2b2 . . . ea2bn

...
...

. . .
...

eanb1 eanb2 . . . eanbn







> 0.

(KöMaL A. 463., October 2008)

Solution: Apply induction on n. For n = 1 the statement is ea1b1 > 0 which
is obvious. Now suppose n > 1 and assume that the statement is true for all
smaller values.

Let ci = ai − a1 > 0. Then

det








ea1b1 ea1b2 . . . ea1bn

ea2b1 ea2b2 . . . ea2bn

...
...

. . .
...

eanb1 eanb2 . . . eanbn








=

= det








ea1b1 ea1b2 . . . ea1bn

ea1b1ec2b1 ea1b2ec2b2 . . . ea1bnec2bn

...
...

. . .
...

ea1b1ecnb1 ea1b2ecnb2 . . . ea1bnecnbn








=

= ea1(b1+b2+···+bn) det








1 1 . . . 1
ec2b1 ec2b2 . . . ec2bn

...
...

. . .
...

ecnb1 ecnb2 . . . ecnbn







,

so it is sufficient to prove that the last determinant is positive.
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To eliminate the first row, subtract the (n − 1)th column from the nth
column. Then subtract the (n− 2)th column from the (n− 1)th column, and
so on, finally subtract the first column from the second column. Then

det








1 1 . . . 1
ec2b1 ec2b2 . . . ec2bn

...
...

. . .
...

ecnb1 ecnb2 . . . ecnbn








=

= det










1 0 0 . . . 0
ec2b1 ec2b2 − ec2b1 ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

ec3b1 ec3b2 − ec3b1 ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

...
. . .

...
ecnb1 ecnb2 − ecnb1 ecnb3 − ecnb2 . . . ecnbn − ecnbn−1










=

= det








ec2b2 − ec2b1 ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

ec3b2 − ec3b1 ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

. . .
...

ecnb2 − ecnb1 ecnb3 − ecnb2 . . . ecnbn − ecnbn−1







.

Consider the function

f(t) = det








ec2t ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

ec3t ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

. . .
...

ecnt ecnb3 − ecnb2 . . . ecnbn − ecnbn−1







.

Then

det








ec2b2 − ec2b1 ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

ec3b2 − ec3b1 ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

. . .
...

ecnb2 − ecnb1 ecnb3 − ecnb2 . . . ecnbn − ecnbn−1








= f(b2)− f(b1).

By Lagrange’s mean value theorem, there exists a b1 < x1 < b2 such that
f(b2)− f(b1) = (b2 − b1)f ′(x1), i.e.,

det








ec2b2 − ec2b1 ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

ec3b2 − ec3b1 ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

. . .
...

ecnb2 − ecnb1 ecnb3 − ecnb2 . . . ecnbn − ecnbn−1








=
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= (b2 − b1) det








c2e
c2x1 ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

c3e
c3x1 ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

. . .
...

cne
cnx1 ecnb3 − ecnb2 . . . ecnbn − ecnbn−1







.

Repeating the same argument for each column, it can be obtained that
there exist real numbers xi ∈ (bi, bi+1) (1 ≤ i ≤ n− 1) such that

det








ec2b2 − ec2b1 ec2b3 − ec2b2 . . . ec2bn − ec2bn−1

ec3b2 − ec3b1 ec3b3 − ec3b2 . . . ec3bn − ec3bn−1

...
...

. . .
...

ecnb2 − ecnb1 ecnb3 − ecnb2 . . . ecnbn − ecnbn−1








=

=

n−1∏

i=1

(bi+1 − bi) · det






c2e
c2x1 c2e

c2x2 . . . c2e
c2xn−1

...
...

. . .
...

cne
cnx1 cne

cnx2 . . . cne
cnxn−1




 =

=

n−1∏

i=1

(bi+1 − bi) ·
n∏

i=2

ci · det






ec2x1 ec2x2 . . . ec2xn−1

...
...

. . .
...

ecnx1 ecnx2 . . . ecnxn−1




 .

By the induction hypothesis, this is positive.

←Back

4.5.15. Let p(x) = xn + an−1x
n−1 + . . .+ a1x+ a0 be a polynomial with real

coefficients and n ≥ 2, and suppose that the polynomial (x − 1)k+1 divides
p(x) with some positive integer k. Prove that

n−1∑

ℓ=0

|aℓ| > 1 +
2k2

n
.

CIIM 4, Guanajuato, Mexico, 2012

Solution: For convenience, define the leading coefficient an = 1 also.

Lemma 1. For every polynomial q(y) with degree at most k, we have
n∑

ℓ=0

aℓ q(ℓ) = 0.

Proof. Let ϕ0(y) = 1 and let ϕν(y) = y(y− 1) . . . (y− ν +1) for ν = 1, 2, . . ..
By (x− 1)k

∣
∣p(x), for 0 ≤ ν ≤ k we have

n∑

ℓ=0

aℓ ϕν(ℓ) = f (ν)(1) = 0.
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The polynomials ϕ0(y), . . . , ϕk(y) form a basis of the vector space of polyno-

mials with degree at most k, so q(y) =
k∑

ν=0
cνϕν(y) with some real numbers

c0, . . . , ck. Then

n∑

ℓ=0

aℓ q(ℓ) =

n∑

ℓ=0

aℓ

(
k∑

ν=0

cν ϕν(ℓ)

)

=

k∑

ν=0

cν

(
n∑

ℓ=0

aℓ ϕν(ℓ)

)

= 0. �

To prove the problem statement, let Tk be the kth Chebyshev polynomial,
and choose

q(y) = Tk

(
2

n− 1
y − 1

)

.

Then q(0), . . . , q(n− 1) ∈ Tk
(
[−1, 1]

)
= [−1, 1], and

q(n) = Tk

(
n+ 1

n− 1

)

= cosh

(

k · cosh−1 n+ 1

n− 1

)

=

= cosh

(

k · log
(

n+1
n−1 +

√
(
n+1
n−1

)2

− 1

))

= cosh

(

k · log (
√
n+ 1)2

n− 1

)

= cosh

(

k · log
1 + 1√

n

1− 1√
n

)

> cosh
2k√
n
.

(In the last step we applied the inequality log 1+x
1−x > 2x.)

By applying the lemma,

n−1∑

ℓ=0

|aℓ| ≥
n−1∑

ℓ=0

aℓ
(
− q(ℓ)

)
= q(n) > cosh

2k√
n
> 1 +

2k2

n
.

←Back

6.0.30. Prove the Condensation lemma: Let a1 ≥ a2 ≥ · · · ≥ an ≥ · · · ≥ 0.
Then ∞∑

n=1

an convergent ⇐⇒
∞∑

k=1

2ka2k convergent.

Solution:

a1+ a2+ a2+ a4+ a4+ a4+ a4+ a8+ · · · ≥
a1+ a2+ a3+ a4+ a5+ a6+ a7+ a8+ · · · ≥
1
2a1+ a2+ a4+ a4+ a8+ a8+ a8+ a8+ · · ·
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←Back

11.1.6. Prove that if f : R→ R, then the set of points of continuity is Borel,
and give as small as possible of Borel class (e.g. Gδσδσδσδσ), to which it still
belongs.

Solution: For every positive integer n let

In =
{

I ⊂ R : I is an open interval and sup
I
f − inf

I
f < 1

n

}

and let
An = ∪In =

⋃

I∈In

I.

By Cauchy’s criterion, any a ∈ R is a point of continuity of f if and only if

∀n ∈ N ∃I ∈ In a ∈ I,

or equivalently
∀n ∈ N a ∈ An.

Therefore, the set of points of continuity is
⋂

n∈N

An, that is in Gδ.

←Back

12.0.9. Let n ≥ 2 and u1 = 1, u2, . . . , un be complex numbers with absolute
value at most 1, and let

f(z) = (z − u1)(z − u2) . . . (z − un).

Show that the polynomial f ′(z) has a root with non-negative real part.
KöMaL A. 430.

Solution: If 1 is a multiple root of f , then f ′(1) = 0 and the statement
becomes trivial. So we assume that u2, . . . , un 6= 1.

Let the roots of f ′(z) be v1, v2 . . . , vn−1, and consider the polynomial
g(z) = f(1− z) = a1z + a2z

2 + . . .+ anz
n.

The non-zero roots of g(z) are 1−u2, . . . , 1−un. From the Viéta formulas
we obtain

n∑

k=2

1

1− uk
=

(1− u2) . . . (1− un−1) + . . .+ (1− u3) . . . (1− un)
(1− u2) . . . (1− un)

= −a2
a1
.

The roots of the polynomial f ′(1−z) = −g′(z) = −a1−2a2z− . . .−nanzn−1

are 1− v1, . . . , 1− vn−1; from the Viéta formulas again,

n−1∑

ℓ=1

1

1− vℓ
=

(1− v1) . . . (1− vn−2) + . . .+ (1− v2 . . . vn−1)

(1− v1) . . . (1− vn−1)
= −2a2

a1
.
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Combining the two equations,

n−1∑

ℓ=1

1

1− vℓ
= 2

n∑

k=2

1

1− uk
.

For every k, the number uk lies in the unit disc (or on its boundary), and
1 − uk lies in the circle with center 1 and unit radius (or on its boundary).
The operation of taking reciprocals can be considered as the combination of
an inversion from pole 0 and mirroring over the real axis. Hence 1

1−uk
lies in

the half plane Re z ≥ 1
2 , i.e. Re

1
1−uk

≥ 1
2 .

Summing up these inequalities,

max
1≤ℓ≤n−1

Re
1

1− vℓ
≥ 1

n− 1

n−1∑

ℓ=1

Re
1

1− vℓ
=

2

n− 1

n∑

k=2

Re
1

1− uk
≥ 1,

so at least one 1
1−vℓ lies in the half plane Re z ≥ 1.

Repeating the same geometric steps backwards,

Re
1

1− vℓ
≥ 1 ⇐⇒

∣
∣
∣
∣
(1− vℓ)−

1

2

∣
∣
∣
∣
≤ 1

2
⇐⇒

∣
∣
∣
∣
vℓ −

1

2

∣
∣
∣
∣
≤ 1

2
=⇒ Re vℓ ≥ 0.

1
uk

1− uk

i

1
1−uk

i

0 0 1 0

1
2

0 1

1− vℓ
0

1
1−vℓ vℓ

0 1
1

←Back

13.1.7. Let a, b ∈ C and |b| < 1. Prove that

1

2π

∫

|z|=1

∣
∣
∣
∣

z − a
z − b

∣
∣
∣
∣

2

| dz| = |a− b|
2

1− |b|2 + 1.
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Solution:

1

2π

∫

|z|=1

∣
∣
∣
∣

z − a
z − b

∣
∣
∣
∣

2

| dz| = 1

2π

∫

|z|=1

(z − a)(z − a)
(z − b)(z − b)

· dz

iz
=

=
1

2πi

∫

|z|=1

(z − a)( 1z − a)
(z − b)( 1z − b)

· dz

z
=

=
1

2πi

∫

|z|=1

(z − a)(1− az)
b(1− bz)

(
1

z − b −
1

z

)

dz =

=
(z − a)(1− az)

b(1− bz)

∣
∣
∣
∣
∣
z=b

− (z − a)(1− az)
b(1− bz)

∣
∣
∣
∣
∣
z=0

=

=
(b− a)(1− ab)

b(1− bb)
+
a

b
=

(a− b)(a− b)
1− bb

+ 1 =
|a− b|2
1− |b|2 + 1.

←Back

13.3.1. An entire function f(z) satisfies |f(1/n)| = 1/n2 for n = 1, 2, . . ., and
|f(i)| = 2. What are the possible values of |f(−i)|?
Solution: Let g(z) = f(z) · f(z̄), which also is an entire function. At the
points of the form 1/n we have g(1/n) = f(1/n) · f(1/n) = |f(1/n)|2 =
(1/n)4. Hence, by the Unicity Theorem, g(z) = z4. Then 1 = |i4| = |g(i)| =
|f(i)| · |f(−i)| = 2|f(−i)|, so |f(−i)| = 1

2 .

Remark: The property |g(1/n)| = 1/n2 is satisfied by the functions of the
form f(z) = z2eiϕ(z) where ϕ is an entire function whose values are real
along the real axis.

←Back

13.3.3. Give an example of a function that is holomorphic in the open unit
disc and has infinitely many roots there.

Solution: For instance, such a function is sin 1
1−z with zeros 1− 1

kπ .

←Back

14.3.12. Let D = {z ∈ C : |z| < 1} be the complex unit disc and let 0 < a < 1
be a real number. Suppose that f : D → C is a holomorphic function such
that f(a) = 1 and f(−a) = −1.
(a) Prove that

sup
z∈D

∣
∣f(z)

∣
∣ ≥ 1

a
.

(b) Prove that if f has no root, then

sup
z∈D

∣
∣f(z)

∣
∣ ≥ exp

(
1− a2
4a

π

)

.

(Schweitzer competition, 2012)
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Solution: (a) Let g(z) =
f(z)− f(−z)

2z
for z 6= 0 and let g(0) = f ′(0). This

is a holomorphic function too, satisfying g(a) = 1−(−1)
2a = 1

a . For a < r < 1,
by the triangle inequality and the maximum principle we have

sup
z∈D
|f(z)| ≥ max

|z|=r
|f(z)| ≥ r ·max

|z|=r

|f(z)|+ |f(−z)|
2r

≥

≥ r ·max
|z|=r

|g(z)| ≥ r · |g(a)| = r

a
.

From r → 1− 0 the statement follows.

(b) Let M = sup
z∈D
|f(z)|. Since f is not constant, |f | < M everywhere in

D. In particular, from f(a) = 1 we can see that M > 1.
The function f is non-zero on the simply connected set D, so it has a

logarithm; there exists a holomorphic function g(z) : D → C such that
f(z) = exp g(z). Without loss of generality we can assume that g(a) = 0.
From f(−a) = −1 we get g(−a) = kπi with some odd integer k, and from
|f | < M we get Re g < logM . Denote by H the half-plane Re z < logM .
Hence g is a D → H function.

Define the linear fractional transformations

ϕ : D → D, ϕ(z) =
z + a

1 + az
, ϕ−1(z) =

z − a
1− az

and
ψ : H → D, ψ(z) =

z

2 logM − z .

Consider the D → D function h = ψ ◦ g ◦ϕ. Since ϕ(0) = a, g(a) = 0 and
ψ(0) = 0, we have h(0) = 0. Schwarz’s lemma, applied to h and the point

ϕ−1(−a) = −2a
1+a2 gives us

∣
∣
∣h
( −2a
1+a2

)
∣
∣
∣ ≤ 2a

1+a2 , so

2a

1 + a2
≥
∣
∣h(ϕ−1(−a))

∣
∣ = |ψ(g(−a))| =

∣
∣
∣
∣

kπi

2 logM − kπi

∣
∣
∣
∣
=

1
√
(
2 logM
|k|π

)2
+ 1

logM ≥ |k|π
2

√
(
1 + a2

2a

)2

− 1 =
|k|π
2
· 1− a

2

2a
≥ 1− a2

4a
π.

Remark: The estimates in the problem statement are sharp. For example, we

have equality for f(z) =
z

a
in part (a), and for f(z) = −i exp

(
iz − a2
iz + 1

· π
2a

)

in part (b).

←Back
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