
COMPLEXITY OF ALGORITHMS

Series of Lecture Notes and Workbooks for Teaching
Undergraduate Mathematics

Algoritmuselmélet
Algoritmusok bonyolultsága
Analitikus módszerek a pénzügyben és a közgazdaságtanban
Analízis feladatgyűjtemény I
Analízis feladatgyűjtemény II
Bevezetés az analízisbe
Complexity of Algorithms
Differential Geometry
Diszkrét matematikai feladatok
Diszkrét optimalizálás
Geometria
Igazságos elosztások
Introductory Course in Analysis
Mathematical Analysis – Exercises I
Mathematical Analysis – Problems and Exercises II
Mértékelmélet és dinamikus programozás
Numerikus funkcionálanalízis
Operációkutatás
Operációkutatási példatár
Parciális differenciálegyenletek
Példatár az analízishez
Pénzügyi matematika
Szimmetrikus struktúrák
Többváltozós adatelemzés
Variációszámítás és optimális irányítás

László Lovász

COMPLEXITY
OF ALGORITHMS

Eötvös Loránd University
Faculty of Science

Typotex

2014

© 2014–2019, László Lovász, Eötvös Loránd University, Mathematical Insti-
tute

Reader: Katalin Friedl
Edited by Zoltán Király and Dömötör Pálvölgyi

The first version of these lecture notes was translated and supplemented by
Péter Gács (Boston University).

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)
This work can be reproduced, circulated, published and performed for non-
commercial purposes without restriction by indicating the author’s name, but
it cannot be modified.

ISBN 978 963 279 244 6
Prepared under the editorship of Typotex Publishing House
(http://www.typotex.hu)
Responsible manager: Zsuzsa Votisky
Technical editor: József Gerner

Made within the framework of the project Nr. TÁMOP-4.1.2-08/2/A/KMR-
2009-0045, entitled “Jegyzetek és példatárak a matematika egyetemi oktatá-
sához” (Lecture Notes and Workbooks for Teaching Undergraduate Mathe-
matics).

KEY WORDS: Complexity, Turing machine, Boolean circuit, algorithmic
decidability, polynomial time, NP-completeness, randomized algorithms, in-
formation and communication complexity, pseudorandom numbers, decision
trees, parallel algorithms, cryptography, interactive proofs.

SUMMARY: The study of the complexity of algorithms started in the 1930’s,
principally with the development of the concepts of Turing machine and al-
gorithmic decidability. Through the spread of computers and the increase of
their power this discipline achieved higher and higher significance.
In these lecture notes we discuss the classical foundations of complexity the-
ory like Turing machines and the halting problem, as well as some leading
new developments: information and communication complexity, generation
of pseudorandom numbers, parallel algorithms, foundations of cryptography
and interactive proofs.

http://www.typotex.hu

Contents

Introduction 1
Some notation and definitions . 2

1 Models of Computation 5
1.1 Finite automata . 7
1.2 The Turing machine . 10
1.3 The Random Access Machine 21
1.4 Boolean functions and Boolean circuits 27

2 Algorithmic decidability 37
2.1 Recursive and recursively enumerable languages 38
2.2 Other undecidable problems 43
2.3 Computability in logic . 49

2.3.1 Godel’s incompleteness theorem 49
2.3.2 First-order logic . 52

3 Computation with resource bounds 59
3.1 Polynomial time . 62
3.2 Other complexity classes . 74
3.3 General theorems on space and time complexity 77

4 Non-deterministic algorithms 87
4.1 Non-deterministic Turing machines 88
4.2 Witnesses and the complexity of non-deterministic algorithms 90
4.3 Examples of languages in NP 95
4.4 NP-completeness . 103
4.5 Further NP-complete problems 109

5 Randomized algorithms 119
5.1 Verifying a polynomial identity 119
5.2 Primality testing . 123

i

5.3 Randomized complexity classes 128

6 Information complexity 133
6.1 Information complexity . 134
6.2 Self-delimiting information complexity 139
6.3 The notion of a random sequence 143
6.4 Kolmogorov complexity, entropy and coding 145

7 Pseudorandom numbers 153
7.1 Classical methods . 154
7.2 The notion of a pseudorandom number generator 156
7.3 One-way functions . 160
7.4 Candidates for one-way functions 164

7.4.1 Discrete square roots 164

8 Decision trees 167
8.1 Algorithms using decision trees 168
8.2 Non-deterministic decision trees 173
8.3 Lower bounds on the depth of decision trees 176

9 Algebraic computations 183
9.1 Models of algebraic computation 183
9.2 Multiplication . 185

9.2.1 Arithmetic operations on large numbers 185
9.2.2 Matrix multiplication 187
9.2.3 Inverting matrices . 189
9.2.4 Multiplication of polynomials 190
9.2.5 Discrete Fourier transform 192

9.3 Algebraic complexity theory 194
9.3.1 The complexity of computing square-sums 194
9.3.2 Evaluation of polynomials 195
9.3.3 Formula complexity and circuit complexity 198

10 Parallel algorithms 201
10.1 Parallel random access machines 201
10.2 The class NC . 206

11 Communication complexity 211
11.1 Communication matrix and protocol-tree 212
11.2 Examples . 217
11.3 Non-deterministic communication complexity 219
11.4 Randomized protocols . 223

ii

12 An application of complexity: cryptography 225
12.1 A classical problem . 225
12.2 A simple complexity-theoretic model 226
12.3 Public-key cryptography . 227
12.4 The Rivest–Shamir–Adleman code (RSA code) 229

13 Circuit complexity 233
13.1 Lower bound for the Majority Function 234
13.2 Monotone circuits . 237

14 Interactive proofs 239
14.1 How to save the last move in chess? 239
14.2 How to check a password – without knowing it? 241
14.3 How to use your password – without telling it? 241
14.4 How to prove non-existence? 243
14.5 How to verify proofs that keep the main result secret? 246
14.6 How to referee exponentially long papers? 246
14.7 Approximability . 248

iii

Introduction

The need to be able to measure the complexity of a problem, algorithm or
structure, and to obtain bounds and quantitative relations for complexity
arises in more and more sciences: besides computer science, the traditional
branches of mathematics, statistical physics, biology, medicine, social sciences
and engineering are also confronted more and more frequently with this prob-
lem. In the approach taken by computer science, complexity is measured by
the quantity of computational resources (time, storage, program, communi-
cation) used up by a particular task. These notes deal with the foundations
of this theory.

Computation theory can basically be divided into three parts of different
character. First, the exact notions of algorithm, time, storage capacity, etc.
must be introduced. For this, different mathematical machine models must
be defined, and the time and storage needs of the computations performed
on these need to be clarified (this is generally measured as a function of the
size of input). By limiting the available resources, the range of solvable prob-
lems gets narrower; this is how we arrive at different complexity classes. The
most fundamental complexity classes provide an important classification of
problems arising in practice, but (perhaps more surprisingly) even for those
arising in classical areas of mathematics; this classification reflects the practi-
cal and theoretical difficulty of problems quite well. The relationship between
different machine models also belongs to this first part of computation theory.

Second, one must determine the resource need of the most important al-
gorithms in various areas of mathematics, and give efficient algorithms to
prove that certain important problems belong to certain complexity classes.
In these notes, we do not strive for completeness in the investigation of con-
crete algorithms and problems; this is the task of the corresponding fields of
mathematics (combinatorics, operations research, numerical analysis, num-
ber theory). Nevertheless, a large number of algorithms will be described
and analyzed to illustrate certain notions and methods, and to establish the
complexity of certain problems.

Third, one must find methods to prove “negative results”, i.e., to show
that some problems are actually unsolvable under certain resource restric-

1

2 Introduction

tions. Often, these questions can be formulated by asking whether certain
complexity classes are different or empty. This problem area includes the
question whether a problem is algorithmically solvable at all; this question
can today be considered classical, and there are many important results con-
cerning it; in particular, the decidability or undecidability of most problems
of interest is known.

The majority of algorithmic problems occurring in practice is, however,
such that algorithmic solvability itself is not in question, the question is only
what resources must be used for the solution. Such investigations, addressed
to lower bounds, are very difficult and are still in their infancy. In these
notes, we can only give a taste of this sort of results. In particular, we
discuss complexity notions like communication complexity or decision tree
complexity, where by focusing only on one type of rather special resource, we
can give a more complete analysis of basic complexity classes.

It is, finally, worth noting that if a problem turns out to be “difficult” to
solve, this is not necessarily a negative result. More and more areas (random
number generation, communication protocols, cryptography, data protection)
need problems and structures that are guaranteed to be complex. These are
important areas for the application of complexity theory; from among them,
we will deal with random number generation and cryptography, the theory
of secret communication.

We use basic notions of number theory, linear algebra, graph theory and
(to a small extent) probability theory. However, these mainly appear in ex-
amples, the theoretical results — with a few exceptions — are understandable
without these notions as well.

I would like to thank László Babai, György Elekes, András Frank,

Gyula Katona, Zoltán Király and Miklós Simonovits for their advice
regarding these notes, and Dezső Miklós for his help in using MATEX, in
which the Hungarian original was written. The notes were later translated
into English by Péter Gács and meanwhile also extended, corrected by
him.

László Lovász

Some notation and definitions

A finite set of symbols will sometimes be called an alphabet. A finite sequence
formed from some elements of an alphabet Σ is called a word. The empty
word will also be considered a word, and will be denoted by ∅. The set of
words of length n over Σ is denoted by Σn, the set of all words (including
the empty word) over Σ is denoted by Σ∗. A subset of Σ∗, i.e., an arbitrary
set of words, is called a language.

Some notation and definitions 3

Note that the empty language is also denoted by ∅ but it is different, from
the language {∅} containing only the empty word.

Let us define some orderings of the set of words. Suppose that an ordering
of the elements of Σ is given. In the lexicographic ordering of the elements
of Σ∗, a word α precedes a word β if either α is a prefix (beginning seg-
ment) of β or the first letter which is different in the two words is smaller in
α. (E.g., 35244 precedes 35344 which precedes 353447.) The lexicographic
ordering does not order all words in a single sequence: for example, every
word beginning with 0 precedes the word 1 over the alphabet {0, 1}. The in-
creasing order is therefore often preferred: here, shorter words precede longer
ones and words of the same length are ordered lexicographically. This is the
ordering of {0, 1}∗ we get when we write down the natural numbers in the
binary number system without the leading 1.

The set of real numbers will be denoted by R, the set of integers by Z

and the set of rational numbers (fractions) by Q. The sign of the set of non-
negative real (integer, rational) numbers is R+ (Z+, Q+). When the base of
a logarithm will not be indicated it will be understood to be 2.

Let f and g be two real (or even complex) functions defined over the
natural numbers. We write

f = O(g)

if there is a constant c > 0 such that for all n large enough we have |f(n)| ≤
c|g(n)|. We write

f = o(g)

if g is 0 only at a finite number of places and f(n)/g(n) → 0 if n → ∞. We
will also use sometimes an inverse of the big O notation: we write

f = Ω(g)

if g = O(f). The notation
f = Θ(g)

means that both f = O(g) and g = O(f) hold, i.e., there are constants
c1, c2 > 0 such that for all n large enough we have c1g(n) ≤ f(n) ≤ c2g(n).
We will also use this notation within formulas. Thus,

(n+ 1)2 = n2 +O(n)

means that (n + 1)2 can be written in the form n2 + R(n) where R(n) =
O(n). Keep in mind that in this kind of formula, the equality sign is not
symmetrical. Thus, O(n) = O(n2) but O(n2) 6= O(n). When such formulas
become too complex it is better to go back to some more explicit notation.

Chapter 1

Models of Computation

In this chapter, we will treat the concept of “computation” or algorithm.
This concept is fundamental to our subject, but we will not define it formally.
Rather, we consider it an intuitive notion, which is amenable to various kinds
of formalization (and thus, investigation from a mathematical point of view).

An algorithm means a mathematical procedure serving for a computation
or construction (the computation of some function), and which can be carried
out mechanically, without thinking. This is not really a definition, but one
of the purposes of this course is to demonstrate that a general agreement
can be achieved on these matters. (This agreement is often formulated as
Church’s thesis.) A computer program in a programming language is a good
example of an algorithm specification. Since the “mechanical” nature of an
algorithm is its most important feature, instead of the notion of algorithm,
we will introduce various concepts of a mathematical machine.

Mathematical machines compute some output from some input. The input
and output can be a word (finite sequence) over a fixed alphabet. Mathe-
matical machines are very much like the real computers the reader knows but
somewhat idealized: we omit some inessential features (e.g., hardware bugs),
and add an infinitely expandable memory.

Here is a typical problem we often solve on the computer: Given a list
of names, sort them in alphabetical order. The input is a string consisting
of names separated by commas: Bob, Charlie, Alice. The output is also a
string: Alice, Bob, Charlie. The problem is to compute a function assigning
to each string of names its alphabetically ordered copy.

In general, a typical algorithmic problem has infinitely many instances,
which then have arbitrarily large size. Therefore, we must consider either an
infinite family of finite computers of growing size, or some idealized infinite

5

6 1. Models of Computation

computer. The latter approach has the advantage that it avoids the questions
of what infinite families are allowed.

Historically, the first pure infinite model of computation was the Turing
machine, introduced by the English mathematician Turing in 1936, thus be-
fore the invention of programmable computers. The essence of this model is
a central part (control unit) that is bounded (has a structure independent
of the input) and an infinite storage (memory). More precisely, the memory
is an infinite one-dimensional array of cells. The control is a finite automa-
ton capable of making arbitrary local changes to the scanned memory cell
and of gradually changing the scanned position. On Turing machines, all
computations can be carried out that could ever be carried out on any other
mathematical machine models. This machine notion is used mainly in the-
oretical investigations. It is less appropriate for the definition of concrete
algorithms since its description is awkward, and mainly since it differs from
existing computers in several important aspects.

The most important weakness of the Turing machine in comparison to real
computers is that its memory is not accessible immediately: in order to read a
distant memory cell, all intermediate cells must also be read. This is remedied
by the Random Access Machine (RAM). The RAM can reach an arbitrary
memory cell in a single step. It can be considered a simplified model of real
world computers along with the abstraction that it has unbounded memory
and the capability to store arbitrarily large integers in each of its memory
cells. The RAM can be programmed in an arbitrary programming language.
For the description of algorithms, it is practical to use the RAM since this is
closest to real program writing. But we will see that the Turing machine and
the RAM are equivalent from many points of view; what is most important,
the same functions are computable on Turing machines and the RAM.

Despite their seeming theoretical limitations, we will consider logic circuits
as a model of computation, too. A given logic circuit allows only a given size
of input. In this way, it can solve only a finite number of problems; it will be,
however, evident, that for a fixed input size, every function is computable by
a logical circuit. If we restrict the computation time, however, then the dif-
ference between problems pertaining to logic circuits and to Turing-machines
or the RAM will not be that essential. Since the structure and work of logic
circuits is the most transparent and tractable, they play a very important
role in theoretical investigations (especially in the proof of lower bounds on
complexity).

If a clock and memory registers are added to a logic circuit we arrive at the
interconnected finite automata that form the typical hardware components
of today’s computers.

1.1. Finite automata 7

Let us note that a fixed finite automaton, when used on inputs of arbi-
trary size, can compute only very primitive functions, and is not an adequate
computation model.

One of the simplest models for an infinite machine is to connect an infi-
nite number of similar automata into an array. This way we get a cellular
automaton.

The key notion used in discussing machine models is simulation. This
notion will not be defined in full generality, since it refers also to machines or
languages not even invented yet. But its meaning will be clear. We will say
that machine M simulates machine N if the internal states and transitions
of N can be traced by machine M in such a way that from the same inputs,
M computes the same outputs as N .

1.1 Finite automata

A finite automaton is a very simple and very general computing device. All
we assume is that if it gets an input, then it changes its internal state and
issues an output. More exactly, a finite automaton has

• an input alphabet, which is a finite set Σ,

• an output alphabet, which is another finite set Σ′, and

• a set Γ of internal states, which is also finite.

To describe a finite automaton, we need to specify, for every input letter
a ∈ Σ and state s ∈ Γ, the output α(a, s) ∈ Σ′ and the new state ω(a, s) ∈ Γ.
To make the behavior of the automata well-defined, we specify a starting
state START.

At the beginning of a computation, the automaton is in state s0 = START.
The input to the computation is given in the form of a string a1a2 . . . an ∈ Σ∗.
The first input letter a1 takes the automaton to state s1 = ω(a1, s0); the
next input letter takes it into state s2 = ω(a2, s1) etc. The result of the
computation is the string b1b2 . . . bn, where bk = α(ak, sk−1) is the output at
the k-th step.

Thus a finite automaton can be described as a 6-tuple 〈Σ,Σ′,Γ, α, ω, s0〉,
where Σ,Σ′,Γ are finite sets, α : Σ×Γ → Σ′ and ω : Σ×Γ → Γ are arbitrary
mappings, and s0 = START ∈ Γ.

Remarks. 1. There are many possible variants of this notion, which are
essentially equivalent. Often the output alphabet and the output signal are
omitted. In this case, the result of the computation is read off from the state
of the automaton at the end of the computation.

8 1. Models of Computation

In the case of automata with output, it is often convenient to assume that
Σ′ contains the blank symbol ∗; in other words, we allow that the automaton
does not give an output at certain steps.

2. Your favorite computer can be modeled by a finite automaton where the
input alphabet consists of all possible keystrokes, and the output alphabet
consists of all texts that it can write on the screen following a keystroke
(we ignore the mouse, ports etc.) Note that the number of states is more
than astronomical (if you have 1 GB of disk space, than this automaton
has something like 210

10

states). At the cost of allowing so many states, we
could model almost anything as a finite automaton. We will be interested in
automata where the number of states is much smaller - usually we assume it
remains bounded while the size of the input is unbounded.

Every finite automaton can be described by a directed graph. The nodes
of this graph are the elements of Γ, and there is an edge labeled (a, b) from
state s to state s′ if α(a, s) = b and ω(a, s) = s′. The computation performed
by the automaton, given an input a1a2 . . . an, corresponds to a directed path
in this graph starting at node START, where the first labels of the edges on
this path are a1, a2, . . . , an. The second labels of the edges give the result of
the computation (Figure 1.1.1).

(c,x)

yyxyxyx

(b,y)

(a,x)

(a,y)

(b,x)

(c,y)

(a,x)

(b,y)

aabcabc

(c,x)START

Figure 1.1.1: A finite automaton

Example 1.1.1. Let us construct an automaton that corrects quotation
marks in a text in the following sense: it reads a text character-by-character,
and whenever it sees a quotation like ” . . . ”, it replaces it by “ . . . ”. All the
automaton has to remember is whether it has seen an even or an odd number
of ” symbols. So it will have two states: START and OPEN (i.e., quotation
is open). The input alphabet consists of whatever characters the text uses,
including ”. The output alphabet is the same, except that instead of ” we
have two symbols “ and ”. Reading any character other than ”, the automaton
outputs the same symbol and does not change its state. Reading ”, it outputs

1.2. The Turing machine 9

“ if it is in state START and outputs ” if it is in state OPEN; and it changes
its state (Figure 1.1.2).

...
(z,z)

(’’,’’)

...
(a,a) (z,z)

(’’,‘‘)

(a,a)

OPENSTART

Figure 1.1.2: An automaton correcting quotation marks

Exercise 1.1.1. Construct a finite automaton with a bounded number of
states that receives two integers in binary and outputs their sum. The au-
tomaton gets alternatingly one bit of each number, starting from the right.
From the point when we get past the first bit of one of the input numbers, a
special symbol • is passed to the automaton instead of a bit; the input stops
when two consecutive • symbols occur.

Exercise 1.1.2. Construct a finite automaton with as few states as possible
that receives the digits of an integer in decimal notation, starting from the
left, and the last output is 1 (=YES) if the number is divisible by 7, and 0
(=NO) if it is not.

Exercise 1.1.3. a) For a fixed positive integer k, construct a finite automa-
ton that reads a word of length 2k, and its last output is 1 (=YES) if the
first half of the word is the same as the second half, and 0 (=NO) otherwise.

b) Prove that the automaton must have at least 2k states.

The following simple lemma and its variations play a central role in com-
plexity theory. Given words a, b, c ∈ Σ∗, let abic denote the word where we
first write a, then i copies of b and finally c.

Lemma 1.1.1 (Pumping lemma). For every regular language L there exists
a natural number k, such that all x ∈ L with |x| ≥ k can be written as
x = abc where |ab| ≤ k and |b| > 0, such that for every natural number i we
have abic ∈ L.

Exercise 1.1.4. Prove the pumping lemma.

Exercise 1.1.5. Prove that L = {0n1n | n ∈ N} is not a regular language.

Exercise 1.1.6. Prove that the language of palindromes:
L = {x1 . . . xnxn . . . x1 : x1 . . . xn ∈ Σn} is not regular.

10 1. Models of Computation

1.2 The Turing machine

Informally, a Turing machine is a finite automaton equipped with an un-
bounded memory. This memory is given in the form of one or more tapes,
which are infinite in both directions. The tapes are divided into an infinite
number of cells in both directions. Every tape has a distinguished starting
cell which we will also call the 0th cell. On every cell of every tape, a symbol
from a finite alphabet Σ can be written. With the exception of finitely many
cells, this symbol must be a special symbol ∗ of the alphabet, denoting the
“empty cell”.

To access the information on the tapes, we supply each tape by a read-write
head. At every step, this sits on a cell of the tape.

The read-write heads are connected to a control unit, which is a finite
automaton. Its possible states form a finite set Γ. There is a distinguished
starting state “START” and a halting state “STOP”. Initially, the control unit
is in the “START” state, and the heads sit on the starting cells of the tapes.
In every step, each head reads the symbol in the given cell of the tape, and
sends it to the control unit. Depending on these symbols and on its own
state, the control unit carries out three things:

• it sends a symbol to each head to overwrite the symbol on the tape (in
particular, it can give the direction to leave it unchanged);

• it sends one of the commands “MOVE RIGHT”, “MOVE LEFT” or
“STAY” to each head;

• it makes a transition into a new state (this may be the same as the old
one);

The heads carry out the first two commands, which completes one step
of the computation. The machine halts when the control unit reaches the
“STOP” state.

While the above informal description uses some engineering jargon, it
is not difficult to translate it into purely mathematical terms. For our
purposes, a Turing machine is completely specified by the following data:
T = 〈k,Σ,Γ, α, β, γ〉, where k ≥ 1 is a natural number, Σ and Γ are finite
sets, ∗ ∈ Σ, START, STOP ∈ Γ, and α, β, γ are arbitrary mappings:

α :Γ× Σk → Γ,

β :Γ× Σk → Σk,

γ :Γ× Σk → {−1, 0, 1}k.

Here α specifies the new state, β gives the symbols to be written on the
tape and γ specifies how the heads move.

1.2. The Turing machine 11

In what follows we fix the alphabet Σ and assume that it contains, besides
the blank symbol ∗, at least two further symbols, say 0 and 1 (in most cases,
it would be sufficient to confine ourselves to these two symbols).

Under the input of a Turing machine, we mean the k words initially written
on the tapes. We always assume that these are written on the tapes starting
at the 0 field and the rest of the tape is empty (∗ is written on the other
cells). Thus, the input of a k-tape Turing machine is an ordered k-tuple,
each element of which is a word in Σ∗. Most frequently, we write a non-
empty word only on the first tape for input. If we say that the input is a
word x then we understand that the input is the k-tuple (x, ∅, . . . , ∅).

The output of the machine is an ordered k-tuple consisting of the words
on the tapes after the machine halts. Frequently, however, we are really
interested only in one word, the rest is “garbage”. If we say that the output
is a single word and don’t specify which, then we understand the word on
the last tape.

It is practical to assume that the input words do not contain the symbol ∗.
Otherwise, it would not be possible to know where is the end of the input: a
simple problem like “find out the length of the input” would not be solvable:
no matter how far the head has moved, it could not know whether the input
has already ended. We denote the alphabet Σ\{∗} by Σ0. (Another solution
would be to reserve a symbol for signaling “end of input” instead.) We also
assume that during its work, the Turing machine reads its whole input; with
this, we exclude only trivial cases.

Remarks. 1. Turing machines are defined in many different, but from all
important points of view equivalent, ways in different books. Often, tapes are
infinite only in one direction; their number can virtually always be restricted
to two and in many respects even to one; we could assume that besides the
symbol ∗ (which in this case we identify with 0) the alphabet contains only
the symbol 1; about some tapes, we could stipulate that the machine can
only read from them or can only write onto them (but at least one tape must
be both readable and writable) etc. The equivalence of these variants (from
the point of view of the computations performable on them) can be verified
with more or less work but without any greater difficulty and so is left as
an exercise to the reader. In this direction, we will prove only as much as
we need, but this should give a sufficient familiarity with the tools of such
simulations.

2. When we describe a Turing machine, we omit defining the functions
at unimportant places, e.g., if the state is “STOP”. We can consider such
machines as taking α = “STOP”, β = ∗k and γ = 0k at such undefined
places. Moreover, if the head writes back the same symbol, then we omit
giving the value of β and similarly, if the control unit stays in the same state,
we omit giving the value of γ.

12 1. Models of Computation

9/+4/1+1

95141.3

DNAIPTUPMOC

+1

E

1 / 1 6

* *

* * * * * * *

CU

Figure 1.2.1: A Turing machine with three tapes

Exercise 1.2.1. Construct a Turing machine that computes the following
functions:

a) x1 . . . xn 7→ xn . . . x1.

b) x1 . . . xn 7→ x1 . . . xnx1 . . . xn.

c) x1 . . . xn 7→ x1x1 . . . xnxn.

d) for an input of length n consisting of all 1’s, it outputs the binary form
of n; for all other inputs, it outputs “SUPERCALIFRAGILISTICEX-
PIALIDOCIOUS”.

e) if the input is the binary form of n, it outputs n 1’s (otherwise “SU-
PERCALIFRAGILISTICEXPIALIDOCIOUS”).

f) Solve d) and e) with a machine making at most O(n) steps.

Exercise 1.2.2. Assume that we have two Turing machines, computing the
functions f : Σ∗

0 → Σ∗
0 and g : Σ∗

0 → Σ∗
0. Construct a Turing machine

computing the function f ◦ g.
Exercise 1.2.3. Construct a Turing machine that makes 2|x| steps for each
input x.

Exercise 1.2.4. Construct a Turing machine that on input x, halts in finitely
many steps if and only if the symbol 0 occurs in x.

Exercise∗ 1.2.5. Show that single tape Turing-machines that are not al-
lowed to write on their tape recognize exactly the regular languages.

Based on the preceding, we can notice a significant difference between
Turing machines and real computers: for the computation of each function,

1.2. The Turing machine 13

we constructed a separate Turing machine, while on real program-controlled
computers, it is enough to write an appropriate program. We will now show
that Turing machines can also be operated this way: a Turing machine can
be constructed on which, using suitable “programs”, everything is computable
that is computable on any Turing machine. Such Turing machines are inter-
esting not just because they are more like programmable computers but they
will also play an important role in many proofs.

Let T = 〈k + 1,Σ,ΓT , αT , βT , γT 〉 and S = 〈k,Σ,ΓS , αS , βS , γS〉 be two
Turing machines (k ≥ 1). Let p ∈ Σ∗

0. We say that T simulates S with
program p if for arbitrary words x1, . . . , xk ∈ Σ∗

0, machine T halts in finitely
many steps on input (x1, . . . , xk, p) if and only if S halts on input (x1, . . . , xk)
and if at the time of the stop, the first k tapes of T each have the same content
as the tapes of S.

We say that a (k + 1)-tape Turing machine is universal (with respect to
k-tape Turing machines) if for every k-tape Turing machine S over Σ, there
is a word (program) p with which T simulates S.

Theorem 1.2.1. For every number k ≥ 1 and every alphabet Σ there is a
(k + 1)-tape universal Turing machine.

Proof. The basic idea of the construction of a universal Turing machine is
that on tape k+1, we write a table describing the work of the Turing machine
S to be simulated. Besides this, the universal Turing machine T writes it up
for itself, which state of the simulated machine S is currently in (even if
there is only a finite number of states, the fixed machine T must simulate all
machines S, so it “cannot keep in mind” the states of S, as S might have more
states than T). In each step, on the basis of this, and the symbols read on
the other tapes, it looks up in the table the state that S makes the transition
into, what it writes on the tapes and what moves the heads make.

First, we give the construction using k + 2 tapes. For the sake of sim-
plicity, assume that Σ contains the symbols “0”, “1”, and “–1”. Let S =
〈k,Σ,ΓS , αS , βS , γS〉 be an arbitrary k-tape Turing machine. We identify
each element of the state set ΓS with a word of length r over the alphabet
Σ∗

0. Let the “code” of a given position of machine S be the following word:

gh1 . . . hkαS(g, h1, . . . , hk)βS(g, h1, . . . , hk)γS(g, h1, . . . , hk)

where g ∈ ΓS is the given state of the control unit, and h1, . . . , hk ∈ Σ are
the symbols read by each head. We concatenate all such words in arbitrary
order and obtain so the word aS , this is what we write on tape k + 1. On
tape k + 2, we write a state of machine S (initially the name of the START
state), so this tape will always have exactly r non-∗ symbols.

Further, we construct the Turing machine T ′ which simulates one step or
S as follows. On tape k+ 1, it looks up the entry corresponding to the state

14 1. Models of Computation

remembered on tape k+2 and the symbols read by the first k heads, then it
reads from there what is to be done: it writes the new state on tape k + 2,
then it lets its first k heads write the appropriate symbol and move in the
appropriate direction.

For the sake of completeness, we also define machine T ′ formally, but
we also make some concession to simplicity in that we do this only for
the case k = 1. Thus, the machine has three heads. Besides the oblig-
atory “START” and “STOP” states, let it also have states NOMATCH-
ON, NOMATCH-BACK-1, NOMATCH-BACK-2, MATCH-BACK, WRITE,
MOVE and AGAIN. Let h(i) denote the symbol read by the i-th head
(1 ≤ i ≤ 3). We describe the functions α, β, γ by the table in Figure 1.2.2
(wherever we do not specify a new state the control unit stays in the old one).

In the run in Figure 1.2.3, the numbers on the left refer to lines in the
above program. The three tapes are separated by triple vertical lines, and
the head positions are shown by underscores. To keep the table transparent,
some lines and parts of the second tape are omitted.

Now return to the proof of Theorem 1.2.1. We can get rid of the (k+2)-nd
tape easily: its contents (which is always just r cells) will be placed on cells
−1,−2, . . . ,−r of the k+1-th tape. It seems, however, that we still need two
heads on this tape: one moves on its positive half, and one on the negative
half (they don’t need to cross over). We solve this by doubling each cell:
the original symbol stays in its left half, and in its right half there is a 1 if
the corresponding head would just be there (the other right half cells stay
empty). It is easy to describe how a head must move on this tape in order
to be able to simulate the movement of both original heads.

Exercise 1.2.6. Show that if we simulate a k-tape machine on the (k + 1)-
tape universal Turing machine, then on an arbitrary input, the number of
steps increases only by a multiplicative factor proportional to the length of
the simulating program.

Exercise 1.2.7. Let T and S be two one-tape Turing machines. We say
that T simulates the work of S by program p (here p ∈ Σ∗

0) if for all words
x ∈ Σ∗

0, machine T halts on input p∗x in a finite number of steps if and only
if S halts on input x and at halting, we find the same content on the tape of
T as on the tape of S. Prove that there is a one-tape Turing machine T that
can simulate the work of every other one-tape Turing machine in this sense.

Our next theorem shows that, in some sense, it is not essential, how many
tapes a Turing machine has.

Theorem 1.2.2. For every k-tape Turing machine S there is a one-tape
Turing machine T which replaces S in the following sense: for every word

1.2. The Turing machine 15

START:

1: if h(2) = h(3) 6= ∗ then 2 and 3 moves right;

2: if h(2), h(3) 6= ∗ and h(2) 6= h(3) then “NOMATCH-ON” and 2,3
move right;

8: if h(3) = ∗ and h(2) 6= h(1) then “NOMATCH-BACK-1” and 2
moves right, 3 moves left;

9: if h(3) = ∗ and h(2) = h(1) then “MATCH-BACK”, 2 moves right
and 3 moves left;

18: if h(3) 6= ∗ and h(2) = ∗ then “STOP”;

NOMATCH-ON:

3: if h(3) 6= ∗ then 2 and 3 move right;

4: if h(3) = ∗ then “NOMATCH-BACK-1” and 2 moves right, 3
moves left;

NOMATCH-BACK-1:

5: if h(3) 6= ∗ then 3 moves left, 2 moves right;

6: if h(3) = ∗ then “NOMATCH-BACK-2”, 2 moves right;

NOMATCH-BACK-2:

7: “START”, 2 and 3 moves right;

MATCH-BACK:

10: if h(3) 6= ∗ then 3 moves left;

11: if h(3) = ∗ then “WRITE” and 3 moves right;

WRITE:

12: if h(3) 6= ∗ then 3 writes the symbol h(2) and 2,3 moves right;

13: if h(3) = ∗ then “MOVE”, head 1 writes h(2), 2 moves right and 3
moves left;

MOVE:

14: “AGAIN”, head 1 moves h(2);

AGAIN:

15: if h(2) 6= ∗ and h(3) 6= ∗ then 2 and 3 move left;

16: if h(2) 6= ∗ but h(3) = ∗ then 2 moves left;

17: if h(2) = h(3) = ∗ then “START”, and 2,3 move right.

Figure 1.2.2: A universal Turing machine

16 1. Models of Computation

line Tape 3 Tape 2 Tape 1
1 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
2 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
3 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
4 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
5 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
6 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
7 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
1 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
8 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
9 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗

10 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
11 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
12 ∗010∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
13 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗11∗
14 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
15 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
16 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
17 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗
1 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗

18 ∗111∗ ∗ 000 0 000 0 0 010 0 000 0 0 010 1 111 0 1 ∗ ∗01∗

Figure 1.2.3: Example run of the universal Turing machine

q q q H1 s5 t5 s6 t6 H2s7 t7

✻

simulated
head 1

❄

simulates 5th cell
of first tape

✻

simulated
head 2

❄

simulates 7th cell
of second tape

qqq

Figure 1.2.4: One tape simulating two tapes

1.2. The Turing machine 17

x ∈ Σ∗
0, machine T halts in finitely many steps on input x if and only if S

halts on input x, and at halt, the same is written on the last tape of T as on
the tape of S. Further, if S makes N steps then T makes O(N2) steps.

Proof. We must store the content of the tapes of S on the single tape of T .
For this, first we “stretch” the input written on the tape of T : we copy the
symbol found on the i-th cell onto the (2ki)-th cell. This can be done as
follows: first, starting from the last symbol and stepping right, we copy every
symbol right by 2k positions. In the meantime, we write ∗ on positions
1, 2, . . . , 2k − 1. Then starting from the last symbol, it moves every symbol
in the last block of nonblanks 2k positions to right, etc.

Now, position 2ki + 2j − 2 (1 ≤ j ≤ k) will correspond to the i-th cell of
tape j, and position 2ki + 2j − 3 will hold a 1 or ∗ depending on whether
the corresponding head of S, at the step corresponding to the computation
of S, is scanning that cell or not. Also to remember how far the heads ever
reached, let us mark by a 0 the two odd-numbered cells of the tape that are
such that never contained a 1 yet but each odd-numbered cell between them
already did. Thus, we assigned a configuration of T to each configuration of
the computation of S.

Now we show how T can simulate the steps of S. First of all, T stores in
its states (used as an internal memory) which state S is in. It also knows
what is the remainder of the number of the cell modulo 2k scanned by its own
head. Starting from right, let the head now make a pass over the whole tape.
By the time it reaches the end it knows what are the symbols read by the
heads of S at this step. From here, it can compute what will be the new state
of S, what will its heads write and which direction they will move. Starting
backwards, for each 1 found in an odd cell, it can rewrite correspondingly the
cell after it, and can move the 1 by 2k positions to the left or right if needed.
(If in the meantime, it would pass beyond the beginning or ending 0 of the
odd cells, then it would move that also by 2k positions in the appropriate
direction.)

When the simulation of the computation of S is finished, the result must
still be “compressed”: the content of cell 2ki+ 2k − 2 must be copied to cell
i. This can be done similarly to the initial “stretching”.

Obviously, the above described machine T will compute the same thing as
S. The number of steps is made up of three parts: the times of “stretching”,
the simulation and the “compression”. Let M be the number of cells on
machine T which will ever be scanned by the machine; obviously, M = O(N).
The “stretching” and “compression” need time O(M2). The simulation of one
step of S needs O(M) steps, so the simulation needs O(MN) steps. All
together, this is still only O(N2) steps.

18 1. Models of Computation

Exercise∗ 1.2.8. Show that every k-tape Turing machine can be simulated
by a two-tape one in such a way that if on some input, the k-tape machine
makes N steps then the two-tape one makes at most O(N logN). [Hint:
Rather than moving the simulated heads, move the simulated tapes!]

As we have seen, the simulation of a k-tape Turing machine by a 1-tape
Turing machine is not completely satisfactory: the number of steps increases
quadratically. This is not just a weakness of the specific construction we
have described; there are computational tasks that can be solved on a 2-tape
Turing machine in some N steps but any 1-tape Turing machine needs N2

steps to solve them. We describe a simple example of such a task.
A palindrome is a word (say, over the alphabet {0, 1}) that does not change

when reversed; i.e., x1 . . . xn is a palindrome if and only if xi = xn−i+1 for
all i. Let us analyze the task of recognizing a palindrome.

Theorem 1.2.3. (a) There exists a 2-tape Turing machine that decides
whether the input word x ∈ {0, 1}n is a palindrome in O(n) steps.

(b) Every one-tape Turing machine that decides whether the input word
x ∈ {0, 1}n is a palindrome has to make Ω(n2) steps in the worst case.

Proof. Part (a) is easy: for example, we can copy the input on the second
tape in n steps, then move the first head to the beginning of the input in n
further steps (leave the second head at the end of the word), and compare x1
with xn, x2 with xn−1, etc., in another n steps. Altogether, this takes only
3n steps.

Part (b) is more difficult to prove. Consider any one-tape Turing machine
that recognizes palindromes. To be specific, say it ends up with writing a “1”
on the starting field of the tape if the input word is a palindrome, and a “0”
if it is not. We are going to argue that for every n, on some input of length
n, the machine will have to make Ω(n2) moves.

It will be convenient to assume that n is divisible by 3 (the argument
is very similar in the general case). Let k = n/3. We restrict the in-
puts to words in which the middle third is all 0, i.e., to words of the form
x1 . . . xk0 . . . 0x2k+1 . . . xn. (If we can show that already among such words,
there is one for which the machine must work for Ω(n2) time, we are done.)

Fix any j such that k ≤ j ≤ 2k. Call the dividing line between fields j and
j+1 of the tape the cut after j. Let us imagine that we have a little daemon
sitting on this line, and recording the state of the central unit any time the
head crosses this line. At the end of the computation, we get a sequence
g1g2 . . . gt of elements of Γ (the length t of the sequence may be different for
different inputs), the j-log of the given input. The key to the proof is the
following observation.

1.2. The Turing machine 19

Lemma 1.2.4. Let x=x1 . . . xk0 . . . 0xk . . . x1 and y=y1 . . . yk0 . . . 0yk . . . y1
be two different palindromes and k ≤ j ≤ 2k. Then their j-logs are different.

Proof of the lemma. Suppose that the j-logs of x and y are the same, say
g1 . . . gt. Consider the input z = x1 . . . xk0 . . . 0yk . . . y1. Note that in this
input, all the xi are to the left from the cut and all the yi are to the right.

We show that the machine will conclude that z is a palindrome, which is
a contradiction.

What happens when we start the machine with input z? For a while, the
head will move on the fields left from the cut, and hence the computation
will proceed exactly as with input x. When the head first reaches field j+1,
then it is in state g1 by the j-log of x. Next, the head will spend some time
to the right from the cut. This part of the computation will be identical with
the corresponding part of the computation with input y: it starts in the same
state as the corresponding part of the computation of y does, and reads the
same characters from the tape, until the head moves back to field j again.
We can follow the computation on input z similarly, and see that the portion
of the computation during its m-th stay to the left of the cut is identical with
the corresponding portion of the computation with input x, and the portion
of the computation during its m-th stay to the right of the cut is identical
with the corresponding portion of the computation with input y. Since the
computation with input x ends with writing a “1” on the starting field, the
computation with input z ends in the same way. This is a contradiction.

Now we return to the proof of the theorem. For a given m, the number of
different j-logs of length less than m is at most

1 + |Γ|+ |Γ|2 + · · ·+ |Γ|m−1 =
|Γ|m − 1

|Γ| − 1
< 2|Γ|m−1.

This is true for any choice of j; hence the number of palindromes whose j-log
for some j has length less than m is at most

2(k + 1)|Γ|m−1.

There are 2k palindromes of the type considered, and so the number of palin-
dromes for whose j-logs have length at least m for all j is at least

2k − 2(k + 1)|Γ|m−1. (1.2.1)

Therefore, if we choose m so that this number is positive, then there will be
a palindrome for which the j-log has length at least m for all j. This implies
that the daemons record at least (k + 1)m moves, so the computation takes
at least (k + 1)m steps.

20 1. Models of Computation

It is easy to check that the choice m = n/⌈6 log |Γ|⌉ makes (1.2.1) positive
(if n is large), and so we have found an input for which the computation takes
at least (k + 1)m > n2/(18 log |Γ|) steps.

Exercise 1.2.9. In the simulation of k-tape machines by one-tape machines
given above the finite control of the simulating machine T was somewhat
bigger than that of the simulated machine S; moreover, the number of states
of the simulating machine depends on k. Prove that this is not necessary:
there is a one-tape machine that can simulate arbitrary k-tape machines.

Exercise 1.2.10. Two-dimensional tape.

a) Define the notion of a Turing machine with a two-dimensional tape.

b) Show that a two-tape Turing machine can simulate a Turing machine
with a two-dimensional tape. [Hint: Store on tape 1, with each symbol
of the two-dimensional tape, the coordinates of its original position.]

c) Estimate the efficiency of the above simulation.

Exercise∗ 1.2.11. Let f : Σ∗
0 → Σ∗

0 be a function. An online Turing
machine contains, besides the usual tapes, two extra tapes. The input tape
is readable only in one direction, the output tape is writable only in one
direction. An online Turing machine T computes function f if in a single
run; for each n, after receiving n symbols x1, . . . , xn, it writes f(x1 . . . xn) on
the output tape.

Find a problem that can be solved more efficiently on an online Turing
machine with a two-dimensional working tape than with a one-dimensional
working tape.

[Hint: On a two-dimensional tape, any one of n bits can be accessed in√
n steps. To exploit this, let the input represent a sequence of operations on

a “database”: insertions and queries, and let f be the interpretation of these
operations.]

Exercise 1.2.12. Tree tape.

a) Define the notion of a Turing machine with a tree-like tape.

b) Show that a two-tape Turing machine can simulate a Turing machine
with a tree-like tape.

c) Estimate the efficiency of the above simulation.

d) Find a problem which can be solved more efficiently with a tree-like
tape than with any finite-dimensional tape.

1.3. The Random Access Machine 21

1.3 The Random Access Machine

Trying to design Turing machines for different tasks, one notices that a Turing
machine spends a lot of its time by just sending its read-write heads from
one end of the tape to the other. One might design tricks to avoid some
of this, but following this line of thought we would drift farther and farther
away from real-life computers, which have a “random-access” memory, i.e.,
which can access any field of their memory in one step. So one would like to
modify the way we have equipped Turing machines with memory so that we
can reach an arbitrary memory cell in a single step.

Of course, the machine has to know which cell to access, and hence we
have to assign addresses to the cells. We want to retain the feature that the
memory is unbounded; hence we allow arbitrary integers as addresses. The
address of the cell to access must itself be stored somewhere; therefore, we
allow arbitrary integers to be stored in each cell (rather than just a single
element of a finite alphabet, as in the case of Turing machines).

Finally, we make the model more similar to everyday machines by making
it programmable (we could also say that we define the analogue of a universal
Turing machine). This way we get the notion of a Random Access Machine
or RAM.

Now let us be more precise. The memory of a Random Access Machine is
a doubly infinite sequence . . . x[−1], x[0], x[1], . . . of memory registers. Each
register can store an arbitrary integer. At any given time, only finitely many
of the numbers stored in memory are different from 0.

The program store is a (one-way) infinite sequence of registers called lines.
We write here a program of some finite length, in a certain programming
language similar to the assembly language of real machines. It is enough, for
example, to permit the following statements:

x[i]:=0; x[i]:=x[i]+1; x[i]:=x[i]-1;
x[i]:=x[i]+x[j]; x[i]:=x[i]-x[j];
x[i]:=x[x[j]]; x[x[i]]:=x[j];
IF x[i]≤ 0 THEN GOTO p.

Here, i and j are the addresses of memory registers (i.e., arbitrary integers), p
is the address of some program line (i.e., an arbitrary natural number). The
instruction before the last one guarantees the possibility of immediate access.
With it, the memory behaves as an array in a conventional programming
language like Pascal. The exact set of basic instructions is important only to
the extent that they should be sufficiently simple to implement, expressive
enough to make the desired computations possible, and their number be
finite. For example, it would be sufficient to allow the values −1,−2,−3
for i, j. We could also omit the operations of addition and subtraction from

22 1. Models of Computation

among the elementary ones, since a program can be written for them. On
the other hand, we could also include multiplication, etc.

The input of the Random Access Machine is a finite sequence of natural
numbers written into the memory registers x[0], x[1], The Random Access
Machine carries out an arbitrary finite program. It stops when it arrives at
a program line with no instruction in it. The output is defined as the content
of the registers x[i] after the program stops.

It is easy to write RAM subroutines for simple tasks that repeatedly oc-
cur in programs solving more difficult things. Several of these are given as
exercises. Here we discuss three tasks that we need later on in this chapter.

Example 1.3.1 (Value assignment). Let i and j be two integers. Then the
assignment

x[i]:=j

can be realized by the RAM program

x[i]:=0
x[i]:=x[i]+1;
...

x[i]:=x[i]+1;

j times

if j is positive, and

x[i]:=0
x[i]:=x[i]-1;
...

x[i]:=x[i]-1;

|j| times

if j is negative.

Example 1.3.2 (Addition of a constant). Let i and j be two integers. Then
the statement

x[i]:=x[i]+j

can be realized in the same way as in the previous example, just omitting the
first row.

Example 1.3.3 (Multiple branching). Let p0, p1, . . . , pr be indices of pro-
gram rows, and suppose that we know that for every i the content of register
i satisfies 0 ≤ x[i] ≤ r. Then the statement

GOTO px[i]

can be realized by the RAM program

1.3. The Random Access Machine 23

IF x[i]≤0 THEN GOTO p0;
x[i]:=x[i]-1:
IF x[i]≤0 THEN GOTO p1;
x[i]:=x[i]-1:
...

IF x[i]≤0 THEN GOTO pr.

Attention must be paid when including this last program segment in a pro-
gram, since it changes the content of x[i]. If we need to preserve the content
of x[i], but have a “scratch” register, say x[−1], then we can do

x[-1]:=x[i];

IF x[-1]≤0 THEN GOTO p0;
x[-1]:=x[-1]-1:

IF x[-1]≤0 THEN GOTO p1;
x[-1]:=x[-1]-1:
...

IF x[-1]≤0 THEN GOTO pr.

If we don’t have a scratch register than we have to make room for one;
since we won’t have to go into such details, we leave it to the exercises.

Exercise 1.3.1. Write a program for the RAM that for a given positive
number a

a) determines the largest number m with 2m ≤ a;

b) computes its base 2 representation (the i-th bit of a is written to x[i]);

c) computes the product of given natural numbers a and b.

If the number of digits of a and b is k, then the program should make O(k)
steps involving numbers with O(k) digits.

Note that the number of steps the RAM makes is not the best measure
of its working time, as it can make operations involving arbitrarily large
numbers. Instead of this, we often speak of running time, where the cost
of one step is the number of digits of the involved numbers (in base two).
Another way to overcome this problem is to specify the number of steps
and the largest number of digits an involved number can have (as in Exercise
1.3.1). In Chapter 3 we will return to the question of how to measure running
time in more detail.

Now we show that the RAM and the Turing machine can compute essen-
tially the same functions, and their running times do not differ too much

24 1. Models of Computation

either. Let us consider (for simplicity) a 1-tape Turing machine, with alpha-
bet {0, 1, 2}, where (deviating from earlier conventions but more practically
here) let 0 stand for the blank space symbol.

Every input x1 . . . xn of the Turing machine (which is a 1–2 sequence) can
be interpreted as an input of the RAM in two different ways: we can write
the numbers n, x1, . . . , xn into the registers x[1], . . . , x[n], or we could assign
to the sequence x1 . . . xn a single natural number by replacing the 2’s with
0 and prefixing a 1. The output of the Turing machine can be interpreted
similarly to the output of the RAM.

We will only consider the first interpretation as the second can be easily
transformed into the first as shown by Exercise 1.3.1.

Theorem 1.3.1. For every (multitape) Turing machine over the alphabet
{0, 1, 2}, one can construct a program on the Random Access Machine with
the following properties. It computes for all inputs the same outputs as the
Turing machine, and if the Turing machine makes N steps then the Random
Access Machine makes O(N) steps with numbers of O(logN) digits.

Proof. Let T = 〈1, {0, 1, 2},Γ, α, β, γ〉. Let Γ = {1, . . . , r}, where 1 = START
and r = STOP. During the simulation of the computation of the Turing
machine, in register 2i of the RAM we will find the same number (0,1 or 2)
as in the i-th cell of the Turing machine. Register x[1] will remember where
is the head on the tape and store its double (as that register corresponds to
it), and the state of the control unit will be determined by where we are in
the program.

Our program will be composed of parts Pi (1 ≤ i ≤ r) and Qi,j (1 ≤ i ≤
r−1, 0 ≤ j ≤ 2). Lines Pi for 1 ≤ i ≤ r−1 are accessed if the Turing machine
is in state i. They read the content of the tape at the actual position, x[1]/2,
(from register x[1]) and jump accordingly to Qi,x[x[1]].

x[3] := x[x[1]];
IF x[3] ≤ 0 THEN GOTO Qi,0;
x[3] := x[3]− 1;
IF x[3] ≤ 0 THEN GOTO Qi,1;
x[3] := x[3]− 1;
IF x[3] ≤ 0 THEN GOTO Qi,2;

Pr consists of a single empty program line (so here we stop).
The program parts Qi,j are only a bit more complicated, they simulate

the action of the Turing machine when in state i it reads symbol.

1.3. The Random Access Machine 25

x[3] := 0;
x[3] := x[3] + 1;
...
x[3] := x[3] + 1;

β(i, j) times

x[x[1]] := x[3];
x[1] := x[1] + γ(i, j);
x[1] := x[1] + γ(i, j);
x[3] := 0;
IF x[3] ≤ 0 THEN GOTO Pα(i,j);

(Here x[1] := x[1] + γ(i, j) means x[1] := x[1] + 1 resp. x[1] := x[1]− 1 if
γ(i, j) = 1 resp. −1, and we omit it if γ(i, j) = 0.)

The program itself looks as follows.

x[1] := 0;
P1

P2

...
Pr

Q00

...
Qr−1,2

With this, we have described the simulation of the Turing machine by the
RAM. To analyze the number of steps and the size of the number used, it is
enough to note that in N steps, the Turing machine can write only to tape
positions between −N and N , so in each step of the Turing machine we work
with numbers of length O(logN).

Remark. In the proof of Theorem 1.3.1, we did not use the instruction
x[i] := x[i] + x[j]; this instruction is needed when computing the digits of
the input if given in a single register (see Exercise 1.3.1). Even this could
be accomplished without the addition operation if we dropped the restriction
on the number of steps. But if we allow arbitrary numbers as inputs to the
RAM then, without this instruction, the number of steps obtained would be
exponential even for very simple problems. Let us e.g., consider the problem
that the content a of register x[1] must be added to the content b of register
x[0]. This is easy to carry out on the RAM in a bounded number of steps.
But if we exclude the instruction x[i] := x[i] + x[j] then the time it needs is
at least min{|a|, |b|}.

Let a program be given now for the RAM. We can interpret its input
and output each as a word in {0, 1,−,#}∗ (denoting all occurring integers in

26 1. Models of Computation

binary, if needed with a sign, and separating them by #). In this sense, the
following theorem holds.

Theorem 1.3.2. For every Random Access Machine program there is a Tur-
ing machine computing for each input the same output. If the Random Access
Machine has running time N then the Turing machine runs in O(N2) steps.

Proof. We will simulate the computation of the RAM by a four-tape Turing
machine. We write on the first tape the contents of registers x[i] (in binary,
and with sign if it is negative). We could represent the content of all non-zero
registers. This would cause a problem, however, because of the immediate
(“random”) access feature of the RAM. More exactly, the RAM can write
even into the register with number 2N using only one step with an integer
of N bits. Of course, then the content of the overwhelming majority of the
registers with smaller indices remains 0 during the whole computation; it is
not practical to keep the content of these on the tape since then the tape will
be very long, and it will take exponential time for the head to walk to the
place where it must write. Therefore, we will store on the tape of the Turing
machine only the content of those registers into which the RAM actually
writes. Of course, then we must also record the number of the register in
question.

What we will do therefore is that whenever the RAM writes a number y
into a register x[z], the Turing machine simulates this by writing the string
##y#z to the end of its first tape. (It never rewrites this tape.) If the RAM
reads the content of some register x[z] then on the first tape of the Turing
machine, starting from the back, the head looks up the first string of form
##u#z; this value u shows what was written in the z-th register the last
time. If it does not find such a string then it treats x[z] as 0.

Each instruction of the “programming language” of the RAM is easy to
simulate by an appropriate Turing machine using only the three other tapes.
Our Turing machine will be a “supermachine” in which a set of states cor-
responds to every program line. These states form a Turing machine which
carries out the instruction in question, and then it brings the heads to the
end of the first tape (to its last nonempty cell) and to cell 0 of the other
tapes. The STOP state of each such Turing machine is identified with the
START state of the Turing machine corresponding to the next line. (In case
of the conditional jump, if x[i] ≤ 0 holds, the “supermachine” goes into the
starting state of the Turing machine corresponding to line p.) The START
of the Turing machine corresponding to line 0 will also be the START of
the supermachine. Besides this, there will be yet another STOP state: this
corresponds to the empty program line.

It is easy to see that the Turing machine thus constructed simulates the
work of the RAM step-by-step. It carries out most program lines in a number

1.4. Boolean functions and Boolean circuits 27

of steps proportional to the number of digits of the numbers occurring in it,
i.e., to the running time of the RAM spent on it. The exception is readout,
for which possibly the whole tape must be searched. Since the length of the
tape is O(N), the total number of steps is O(N2).

Exercise 1.3.2. Let p(x) = a0+a1x+· · ·+anxn be a polynomial with integer
coefficients a0, . . . , an. Write a RAM program computing the coefficients of
the polynomial (p(x))2 from those of p(x). Estimate the running time of your
program in terms of n and K = max{|a0|, . . . , |an|}.

Exercise 1.3.3. Prove that if a RAM is not allowed to use the instruction
x[i] := x[i] + x[j], then adding the content a of x[1] to the content b of x[2]
takes at least min{|a|, |b|} steps.

Exercise 1.3.4. Since the RAM is a single machine the problem of uni-
versality cannot be stated in exactly the same way as for Turing machines:
in some sense, this single RAM is universal. However, the following “self-
simulation” property of the RAM comes close. For a RAM program p and
input x, let R(p, x) be the output of the RAM. Let 〈p, x〉 be the input of the
RAM that we obtain by writing the symbols of p one-by-one into registers
1, 2, . . ., encoding each symbol by some natural number, followed by a −1,
and then by the registers containing the original sequence x. Prove that there
is a RAM program u such that for all RAM programs p and inputs x we have
R(u, 〈p, x〉) = R(p, x).

1.4 Boolean functions and Boolean circuits

A Boolean function is a mapping f : {0, 1}n → {0, 1}. The values 0,1
are sometimes identified with the values False, True and the variables in
f(x1, . . . , xn) are sometimes called Boolean (or logical) variables (or data
types). In many algorithmic problems, there are n input Boolean variables
and one output bit. For example: given a graph G with N nodes, suppose we
want to decide whether it has a Hamiltonian cycle. In this case, the graph
can be described with

(

N
2

)

Boolean variables: the nodes are numbered from
1 to N and xi,j (1 ≤ i < j ≤ N) is 1 if i and j are connected and 0 if they
are not. The value of the function f(x1,2, x1,3, . . . , xn−1,n) is 1 if there is a
Hamiltonian cycle in G and 0 if there is not. The problem is to compute the
value of this (implicitly given) Boolean function.

There are only four one-variable Boolean functions: the identically 0, the
identically 1, the identity and the negation: x → x = 1 − x. We also use
the notation ¬x. There are 16 Boolean functions with 2 variables (because
there are 24 mappings of {0, 1}2 into {0, 1}). We describe only some of these

28 1. Models of Computation

two-variable Boolean functions: the operation of conjunction (logical AND).

x ∧ y =

{

1 if x = y = 1,

0 otherwise,

this can also be considered as the common or mod 2 multiplication, the
operation of disjunction (logical OR)

x ∨ y =

{

0 if x = y = 0,

1 otherwise,

the binary addition (logical exclusive OR a.k.a. XOR)

x⊕ y ≡ x+ y mod 2.

Among Boolean functions with several variables, one has the logical AND,
OR and XOR defined in the natural way. A more interesting function is
MAJORITY, which is defined as follows:

MAJORITY(x1, . . . , xn) =

{

1 if at least n/2 of the variables is 1;

0 otherwise.

The bit-operations are connected by a number of useful identities. All
three operations AND, OR and XOR are associative and commutative. There
are several distributivity properties:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

and
x ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z)

The De Morgan identities connect negation with conjunction and disjunc-
tion:

x ∧ y = x ∨ y,
x ∨ y = x ∧ y

Expressions composed using the operations of negation, conjunction and dis-
junction are called Boolean polynomials.

Lemma 1.4.1. Every Boolean function is expressible as a Boolean polyno-
mial.

1.4. Boolean functions and Boolean circuits 29

✚✙
✛✘
AND

❄

✁
✁
✁☛

❆
❆
❆❯

Figure 1.4.1: A node of a logic circuit

x = 0

y = 1

0

0
◗◗s
✑✑✸✖✕

✗✔
NOR

x = x NOR x = 1

❳❳❳③

✘✘✘✿✖✕
✗✔
NOR

x NOR y = 0

0

0

✑✑✸
◗◗s

✖✕
✗✔
NOR

x⇒ y = 1

Figure 1.4.2: A NOR circuit computing x⇒ y, with assignment on edges

✲t
s ✲s

✻
trigger

Figure 1.4.3: A shift register

30 1. Models of Computation

✲ Carry

x r
y r

✲r ◗◗s
❅❅❘

✚✙
✛✘
Maj

✲
✑✑✸

◗◗s

✚✙
✛✘
XOR ✲

Figure 1.4.4: A binary adder

x

c

✍✌
✎☞
NOT

✸
s✍✌

✎☞
AND

✸
s✍✌

✎☞
AND

✸
s✍✌

✎☞
OR ✲ s x,0

0,1
✟✟✯

❍❍

✍✌
✎☞
0

■

1,1

0,1

❘

✍✌
✎☞
1

✟✟

❍❍❨
x,0
1,1

Figure 1.4.5: Circuit and state-transition diagram of a memory cell

1.4. Boolean functions and Boolean circuits 31

Proof. Let a1, . . . , an ∈ {0, 1}. Let

zi =

{

xi if ai = 1,

xi if ai = 0,

and Ea1,...,an(x1, . . . , xn) = z1∧· · ·∧zn. Notice that Ea1,...,an(x1, . . . , xn) = 1
holds if and only if (x1, . . . , xn) = (a1, . . . , an). Hence

f(x1, . . . , xn) =
∨

f(a1,...,an)=1

Ea1,...,an(x1, . . . , xn).

The Boolean polynomial constructed in the above proof has a special form.
A Boolean polynomial consisting of a single (negated or unnegated) variable
is called a literal. We call an elementary conjunction a Boolean polynomial in
which variables and negated variables are joined by the operation “∧”. (As a
degenerate case, the constant 1 is also an elementary conjunction, namely the
empty one.) A Boolean polynomial is a disjunctive normal form if it consists
of elementary conjunctions, joined by the operation “∨”. We allow also the
empty disjunction, when the disjunctive normal form has no components.
The Boolean function defined by such a normal form is identically 0. In
general, let us call a Boolean polynomial satisfiable if it is not identically 0.

By a disjunctive k-normal form, we understand a disjunctive normal form
in which every conjunction contains at most k literals.

Example 1.4.1. Here is an important example of a Boolean function ex-
pressed by disjunctive normal form: the selection function. Borrowing the
notation from the programming language C, we define it as

x?y : z =

{

y if x = 1,

z if x = 0.

It can be expressed as x?y : z = (x ∧ y) ∨ (¬x ∧ z).

Interchanging the role of the operations “∧” and “∨”, we can define the
elementary disjunction and conjunctive normal form. The empty conjunc-
tion is also allowed, it is the constant 1. In general, let us call a Boolean
polynomial a tautology if it is identically 1.

We have seen that all Boolean functions can be expressed by a disjunctive
normal form. From the disjunctive normal form, we can obtain a conjunctive
normal form, applying the distributivity property repeatedly, this is a way
to decide whether the polynomial is a tautology. Similarly, an algorithm
to decide whether a polynomial is satisfiable is to bring it to a disjunctive
normal form. Both algorithms can take very long time.

32 1. Models of Computation

In general, one and the same Boolean function can be expressed in many
ways as a Boolean polynomial. Given such an expression, it is easy to com-
pute the value of the function. However, most Boolean functions can be
expressed only by very large Boolean polynomials; this may even be so for
Boolean functions that can be computed fast, e.g. the MAJORITY function.

One reason why a computation might be much faster than the size of the
Boolean polynomial is that the size of a Boolean polynomial does not reflect
the possibility of reusing partial results. This deficiency is corrected by the
following more general formalism.

Let G be a directed graph with numbered nodes (called gates) that does
not contain any directed cycle (i.e., is acyclic, a.k.a. DAG). The sources,
i.e., the nodes without incoming edges, are called input nodes. We assign a
literal (a variable or its negation) to each input node. The sinks of the graph,
i.e., the nodes without outgoing edges, will be called output nodes. (In what
follows, we will deal most frequently with the case when there is only one
output node.)

Each node v of the graph that is not a source, i.e., which has some indegree
d = d+(v) > 0, computes a Boolean function Fv : {0, 1}d → {0, 1}. The
incoming edges of the node are numbered in some increasing order and the
variables of the function Fv are made to correspond to them in this order.
Such a graph is called a circuit.

The size of the circuit is the number of gates (including the input gates);
its depth is the maximal length of paths leading from input nodes to output
nodes.

Every circuit H determines a function. We assign to each input node the
value of the assigned literal. This is the input assignment, or input of the
computation. From this, we can compute at each node v a value x(v) ∈ {0, 1}:
if the start nodes u1, . . . , ud of the incoming edges have already received a
value then v receives the value Fv(x(u1), . . . , x(ud)). The value at the sinks
give the output of the computation. We will say that the function defined
this way is computed by the circuit H . Single sink circuits determine Boolean
functions.

Exercise 1.4.1. Prove that in the above definition, the circuit computes a
unique output for every possible input assignment.

Example 1.4.2. A NOR (negated OR) circuit computing x ⇒ y. We use
the formulas

x⇒ y = ¬(¬x NOR y), ¬x = xNOR x.

If the states of the input nodes of the circuit are x and y, then the state of
the output node is x ⇒ y. The assignment can be computed in 3 stages,
since the longest path has 3 edges. See Figure 1.4.2.

1.4. Boolean functions and Boolean circuits 33

Example 1.4.3. For a natural number n we can construct a circuit that will
simultaneously compute all the functions Ea1,...,an(x1, . . . , xn) (as defined
above in the proof of Lemma 1.4.1) for all values of the vector (a1, . . . , an).
This circuit is called the decoder circuit since it has the following behavior: for
each input x1, . . . , xn only one output node, namely Ex1,...,xn will be true. If
the output nodes are consecutively numbered then we can say that the circuit
decodes the binary representation of a number k into the k-th position in the
output. This is similar to addressing into a memory and is indeed the way a
“random access” memory is addressed. Suppose that a decoder circuit is given
for n. To obtain one for n+1, we split each output y = Ea1,...,an(x1, . . . , xn)
in two, and form the new nodes

Ea1,...,an,1(x1, . . . , xn+1) = y ∧ xn+1,

Ea1,...,an,0(x1, . . . , xn+1) = y ∧ ¬xn+1,

using a new copy of the input xn+1 and its negation.

Of course, every Boolean function is computable by a trivial (depth 1) cir-
cuit in which a single (possibly very complicated) gate computes the output
immediately from the input. The notion of circuits is interesting if we restrict
the gates to some simple operations (AND, OR, exclusive OR, implication,
negation, etc.). If each gate is a conjunction, disjunction or negation then us-
ing the De Morgan rules, we can push the negations back to the inputs which,
as literals, can be negated variables anyway. If all gates are disjunctions or
conjunctions then the circuit is called Boolean.

The in-degree of the nodes is called fan-in. This is often restricted to
2 or to some fixed maximum. Sometimes, bounds are also imposed on the
out-degree, or fan-out. This means that a partial result cannot be “freely”
distributed to an arbitrary number of places.

Exercise 1.4.2. Prove that for every Boolean circuit of size N , there is
a Boolean circuit of size at most N2 with indegree 2, computing the same
Boolean function.

Exercise 1.4.3. Prove that for every circuit of size N and indegree 2 there
is a Boolean circuit of size O(N) and indegree at most 2 computing the same
Boolean function.

Exercise 1.4.4. A Boolean function is monotone if its value does not de-
crease whenever any of the variables is increased. Prove that for every
Boolean circuit computing a monotone Boolean function there is another
one that computes the same function and uses only nonnegated variables
and constants as inputs.

34 1. Models of Computation

Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function and let

f(x1, . . . , xn) = E1 ∨ · · · ∨ EN

be its representation by a disjunctive normal form. This representation cor-
responds to a depth 2 circuit in the following manner: let its input points
correspond to the variables x1, . . . , xn and the negated variables x1, . . . , xn.
To every elementary conjunction Ei, let there correspond a vertex into which
edges run from the input points belonging to the literals occurring in Ei,
and which computes the conjunction of these. Finally, edges lead from these
vertices into the output point t which computes their disjunction. Note that
this circuit has large fan-in and fan-out.

Exercise 1.4.5. Prove that the Boolean polynomials are in one-to-one cor-
respondence with those Boolean circuits that are trees.

We can consider each Boolean circuit as an algorithm serving to compute
some Boolean function. It can be seen immediately, however, that circuits
are less flexible less than e.g., Turing machines: a circuit can deal only with
inputs and outputs of a given size. It is also clear that (since the graph is
acyclic) the number of computation steps is bounded. If, however, we fix the
length of the input and the number of steps then by an appropriate circuit, we
can already simulate the work of every Turing machine computing a single bit.
We can express this also by saying that every Boolean function computable
by a Turing machine in a certain number of steps is also computable by a
suitable, not too big, Boolean circuit.

Theorem 1.4.2. For every Turing machine T and every pair n,N ≥ 1 of
numbers there is a Boolean circuit with n inputs, depth O(N), indegree at
most 2, that on an input (x1, . . . , xn) ∈ {0, 1}n computes 1 if and only if
after N steps of the Turing machine T , on the 0th cell of the first tape, there
is a 1.

(Without the restrictions on the size and depth of the Boolean circuit, the
statement would be trivial since every Boolean function can be expressed by
a Boolean circuit.)

Proof. Let us be given a Turing machine T = 〈k,Σ, α, β, γ〉 and n,N ≥ 1.
For simplicity, assume k = 1. Let us construct a directed graph with vertices
v[t, g, p] and w[t, p, h] where 0 ≤ t ≤ N , g ∈ Γ, h ∈ Σ and −N ≤ p ≤ N .
An edge runs into every point v[t+ 1, g, p] and w[t+ 1, p, h] from the points
v[t, g′, p+ ε] and w[t, p+ ε, h′] (g′ ∈ Γ, h′ ∈ Σ, ε ∈ {−1, 0, 1}). Let us take n
input points s0, . . . , sn−1 and draw an edge from si into the points w[0, i, h]
(h ∈ Σ). Let the output point be w[N, 0, 1].

1.4. Boolean functions and Boolean circuits 35

In the vertices of the graph, the logical values computed during the evalu-
ation of the Boolean circuit (which we will denote, for simplicity, just like the
corresponding vertex) describe a computation of the machine T as follows:
the value of vertex v[t, g, p] is true if after step t, the control unit is in state
g and the head scans the p-th cell of the tape. The value of vertex w[t, p, h]
is true if after step t, the p-th cell of the tape holds symbol h.

Certain ones among these logical values are given. The machine is initially
in the state START, and the head starts from cell 0:

v[0, g, p] =

{

1 if g = START and p = 0,
0 otherwise,

further we write the input onto cells 0, . . . , n− 1 of the tape:

w[0, p, h] =

1 if (p < 0 or p ≥ n), and h = ∗,
or if 0 ≤ p ≤ n− 1 and h = xp,

0 otherwise.

The rules of the Turing machine tell how to compute the logical values cor-
responding to the rest of the vertices:

v[t+ 1, g, p] =
∨

g′∈Γ
h′∈Σ

α(g′ ,h′)=g

(

v[t, g′, p− γ(g′, h′)] ∧w[t, p− γ(g′, h′), h′]
)

w[t+1, p, h] =
(

w[t, p, h]∧
∧

g′∈Γ

v[t, g′, p]
)

∨
(

∨

g′∈Γ
h′∈Σ

β(g′,h′)=h

(

v[t, g′, p]∧w[t, p, h′]
)

)

It can be seen that these recursions can be taken as logical functions which
turn the graph into a Boolean circuit computing the desired functions. The
size of the circuit will be O(N2), its depth O(N). Since the in-degree of each
point is at most 3|Σ| · |Γ| = O(1), we can transform the circuit into a Boolean
circuit of similar size and depth.

Remark. Our construction of a universal Turing machine in Theorem 1.2.1
is inefficient and unrealistic. For most commonly used transition functions
α, β, γ, a table is a very inefficient way to store the description. A Boolean
circuit (with a Boolean vector output) is often a vastly more economical rep-
resentation. It is possible to construct a universal one-tape Turing machine
V1 taking advantage of such a representation. The beginning of the tape of
this machine would not list the table of the transition function of the simu-
lated machine, but would rather describe the Boolean circuit computing it,
along with a specific state of this circuit. Each stage of the simulation would
first simulate the Boolean circuit to find the values of the functions α, β, γ
and then proceed as before.

36 1. Models of Computation

Exercise 1.4.6. Consider that x1x0 is the binary representation of an integer
x = 2x1 + x0 and similarly, y1y0 is a binary representation of a number y.
Let f(x0, x1, y0, y1, z0, z1) be the Boolean formula which is true if and only
if z1z0 is the binary representation of the number x+ y mod 4.

Express this formula using only conjunction, disjunction and negation.

Exercise 1.4.7. Convert into disjunctive normal form the following Boolean
functions.

a) x+ y + z mod 2,

b) x+ y + z + t mod 2.

Exercise 1.4.8. Convert the formula (x ∧ y ∧ z) ⇒ (u ∧ v) into conjunctive
normal form.

Exercise 1.4.9. For each n, construct a Boolean circuit whose gates have
indegree ≤ 2, with size O(2n) with 2n+n inputs and which is universal in the
following sense: for all binary strings p of length 2n and binary string x of
length n, the output of the circuit with input xp is the value, with argument
x, of the Boolean function whose truth table (i.e., output values) is given by
p. [Hint: use the decoder circuit of Example 1.4.3.]

Exercise 1.4.10. The gates of the Boolean circuits in this exercise are as-
sumed to have indegree ≤ 2.

a) Prove the existence of a constant c, such that for all n, there is a Boolean
function for which each Boolean circuit computing it has size at least
c · 2n/n. [Hint: count the number of circuits of size k.]

b)∗ For a Boolean function f with n inputs, show that the size of the
Boolean circuit needed for its implementation is O(2n/n).

Chapter 2

Algorithmic decidability

In this chapter, we study the question: which problems can be solved by any
algorithm (or computing device) at all?

Until the 1930’s, it was the consensus among mathematicians — mostly
not spelled out precisely — that every mathematical question that can be
formulated precisely, can also be solved. This statement has two interpreta-
tions. We can talk about a single yes-or-no question (say: is every planar
graph 4-colorable? is every even integer larger than 2 expressible as the sum
of two primes?), and then the decision means that it can be proved or dis-
proved from the axioms of set theory (which were, and still are, generally
accepted as the axioms of mathematics). This belief was destroyed by the
the Austrian mathematician Kurt Gödel, who published a famous result in
1931, the First Incompleteness Theorem of logic, which implies that there are
perfectly well formulated mathematical questions that cannot be answered
from the axioms of set theory.

Now one could think that this is a weakness of this particular system of
axioms: perhaps by adding some generally accepted axioms (which had been
overlooked) one could get a new system that would allow us to decide the
truth of every well-formulated mathematical statement. The First Incom-
pleteness Theorem, however, proves that this hope was also vain: no matter
how we extend the axiom system of set theory (allowing even infinitely many
axioms, subject to some reasonable restrictions: no contradiction should be
derivable and it should be possible to decide about a statement whether it is
an axiom or not), still there remain unsolvable problems.

The second meaning of the question of decidability is when we are con-
cerned with a family of questions and are looking for an algorithm that decides
each of them. In 1936, Church formulated a family of problems for which he
could prove that they are not decidable by any algorithm. For this statement

37

38 2. Algorithmic decidability

to make sense, the mathematical notion of an algorithm had to be created.
Church used tools from logic, the notion of recursive functions, to formalize
the notion of algorithmic solvability.

Similarly as in connection with Gödel’s Theorem, it seems quite possible
that one could define algorithmic solvability in a different way, or extend the
arsenal of algorithms with new tools, allowing the solution of new problems.
In the same year when Church published his work, Turing created the notion
of a Turing machine. Nowadays we call something algorithmically computable
if it can be computed by some Turing machine. But it turned out that
Church’s original model is equivalent to the Turing machine in the sense
that the same computational problems can be solved by them. We have
seen in the previous chapter that the same holds for the Random Access
Machine. Many other computational models have been proposed (some are
quite different from the Turing machine, RAM, or any real-life computer, like
quantum computing or DNA computing), but nobody found a machine model
that could solve more computational problems than the Turing machine.

Church in fact anticipated this by formulating the so-called Church The-
sis, according to which every “calculation” can be formalized in the system
he gave. Today we state this hypothesis in the form that all functions com-
putable on any computing device are computable on a Turing machine. As a
consequence of this thesis (if we accept it) we can simply speak of computable
functions without referring to the specific type of machine on which they are
computable.

(One could perhaps make one exception from the Church Thesis for algo-
rithms using randomness. These can solve algorithmically unsolvable com-
putational problems so that the answer is correct with large probability. See
Chapter 6 on Information Complexity.)

2.1 Recursive and recursively enumerable

languages

Let Σ be a finite alphabet that contains the symbol “∗”. We will allow as
input for a Turing machine words that do not contain this special symbol:
only letters from Σ0 = Σ \ {∗}.

We call a function f : Σ∗
0 → Σ∗

0 recursive or computable if there exists a
Turing machine that for any input x ∈ Σ∗

0 will stop after finite time with
f(x) written on its first tape.

Remark. We have seen in the previous chapter that the definition does not
change if we assume that k = 1, i.e., the Turing machine has only one tape.

2.1. Recursive and recursively enumerable languages 39

The notions of recursive, as well as that of “recursively enumerable” and
“partial recursive” defined below can be easily extended, in a unique way, to
functions and sets over some countable sets different from Σ∗

0, like the set of
natural numbers, the set N∗ of finite strings of natural numbers, etc. The
extension goes with help of some standard coding of, e.g., the set of natural
numbers by elements of Σ∗

0. Therefore, even though we define these notions
only over Σ∗

0, we sometimes use them in connection with functions defined
over other domains. This is a bit sloppy but does not lead to any confusion.

We call a language L recursive if its characteristic function

fL(x) =

{

1 if x ∈ L,

0 otherwise,

is recursive. Instead of saying that a language L is recursive, we can also
say that the property defining L is decidable. If a Turing machine calculates
this function then we say that it decides the language. It is obvious that
every finite language is recursive. Also if a language is recursive then its
complement is also recursive.

Remark. It is obvious that there is a continuum of languages (and so un-
countably many) but only countably many Turing machines. So there must
exist non-recursive languages. At the end of this section, we will see some
concrete languages that are non-recursive.

We call the language L recursively enumerable if L = ∅ or there exists
a recursive function f such that the range of f is L. This means that we
can enumerate the elements of L: L = {f(w0), f(w1), . . .}, where Σ∗

0 =
{w0, w1, . . .}. Here, the elements of L do not necessarily occur in increasing
order and repetition is also allowed.

We give an alternative definition of recursively enumerable languages in the
following lemma. Let us order the elements of Σ∗

0 in increasing order, where
shorter words precede longer ones and words of the same length are ordered
lexicographically. It is easy to construct a Turing machine that enumerates
all the words in increasing order, or outputs the j-th word of the ordering for
input j.

Lemma 2.1.1. A language L is recursively enumerable if and only if there is
a Turing machine T such that if we write x on the first tape of T the machine
stops if and only if x ∈ L.

Proof. Let L be recursively enumerable. We can assume that it is nonempty.
Let L be the range of f . We construct a Turing machine which on input x
stops if and only if x ∈ L. For each input x the machine calculates f(y) for
every y ∈ Σ∗

0 (e.g., by taking them in increasing order) and stops if it finds a
y such that f(y) = x.

40 2. Algorithmic decidability

On the other hand, let us assume that L consists of the words on which T
stops. We can assume that L is not empty and a ∈ L. We construct a Turing
machine T0 that does the following. If the input on its first tape is a natural

number i, then it computes the (i− ⌊
√
i⌋2)-th word of Σ∗

0 (say x), simulates
T on this input, x, for i steps. If T stops, then T0 outputs x (by writing it
on its last tape). If T does not stop, then T0 outputs a. Since every word of
Σ∗

0 will occur for infinitely many values of i the range of T0 will be L.

There is nothing really tricky about the function (i− ⌊
√
i⌋2); all we need

is that for i = 0, 1, 2, . . . its value takes every non-negative integer infinitely
many times. The technique used in this proof, that of simulating infinitely
many computations by a single one, is sometimes called “dovetailing”.

Now we study the relationship between recursive and recursively enumer-
able languages.

Lemma 2.1.2. Every recursive language is recursively enumerable.

Proof. Let L be a recursive language. If L = ∅, then L is recursively enu-
merable by definition, so suppose this is not the case and take some a ∈ L.
Define f as follows.

f(x) =

{

x if x ∈ L,
a if x 6∈ L.

Since f is recursive and its range is L, we are done.

The next theorem characterizes the relation of recursively enumerable and
recursive languages.

Theorem 2.1.3. A language L is recursive if and only if both languages L
and Σ∗

0 \ L are recursively enumerable.

Proof. If L is recursive then its complement is also recursive, and by the
previous lemma, both are recursively enumerable.

On the other hand, let us assume that both L and its complement are re-
cursively enumerable. We can construct two machines that enumerate them,
and a third one simulating both that detects if one of them lists x. Sooner
or later this happens and then we know where x belongs.

Let us call a language co-recursively enumerable if its complement is re-
cursively enumerable. So the Theorem 2.1.3 says that a language is recursive
if and only if it is recursively enumerable and co-recursively enumerable. It is
clear that the class of recursively enumerable languages is countable, so there
must be languages that are neither recursively enumerable nor co-recursively
enumerable (see also Exercise 2.3.3). What is much less obvious is that there

2.1. Recursive and recursively enumerable languages 41

are recursively enumerable languages that are not recursive, since both classes
are countable. The construction of such a language is our next goal.

For a Turing machine T let LT be the set of those words x ∈ Σ∗
0 for which

T stops when we write x on all of its tapes.

Theorem 2.1.4. If T is a universal Turing machine with k + 1 tapes then
LT is recursively enumerable, but it is not recursive.

Proof. The first statement can be proved similarly to Lemma 2.1.1. For
simplicity, we prove the second statement only for k = 1.

Let us assume, by way of contradiction that LT is recursive. Then Σ∗
0\LT

would be recursively enumerable, so there would exist a 1-tape Turing ma-
chine T1 that on input x would stop if and only if x 6∈ LT . The machine T1
can be simulated on T by writing an appropriate program p on the second
tape of T . Then writing p on both tapes of T , it would stop if T1 would stop
on input p because of the simulation. The machine T1 was defined, on the
other hand, to stop on p if and only if T does not stop with input p on both
tapes (i.e., when p 6∈ LT). This is a contradiction.

This proof uses the so called diagonalization technique originating from set
theory (where it was used by Cantor to show that the set of all real numbers
is not countable). The technique forms the basis of many proofs in logic,
set-theory and complexity theory. We will see more of these in what follows.

There is a number of variants of the previous result, asserting the unde-
cidability of similar problems.

Let T be a Turing machine. The halting problem for T is the problem to
decide, for all possible inputs x, whether T halts on x. Thus, the decidability
of the halting problem of T means the decidability of the set of those x for
which T halts. We can also speak about the halting problem in general,
which means that a pair (T, x) is given where T is a Turing machine (given
by its transition table) and x is an input.

Theorem 2.1.5. There is a 1-tape Turing machine whose halting problem
is undecidable.

Proof. Suppose that the halting problem is decidable for all one-tape Turing
machines. Let T be a 2-tape universal Turing machine and let us construct a
1-tape machine T0 similarly to the proof of Theorem 1.2.2 (with k = 2), with
the difference that at the start, we write the i-th letter of word x not only in
cell 4i but also in cell 4i− 2. Then on an input x, machine T0 will simulate
the work of T , when the latter starts with x on both of its tapes. Since it is
undecidable whether T halts for a given input (x, x), it is also undecidable
about T0 whether it halts on a given input x.

42 2. Algorithmic decidability

The above proof, though simple, is the prototype of a great number of
undecidability proofs. These proceed by taking any problem P1 known to
be undecidable (in this case, membership in LT) and showing that it can
be reduced to the problem P2 at hand (in this case, the halting problem of
T0). The reduction shows that if P2 is decidable then so is P1. But since we
already know that P1 is undecidable, we conclude that P2 is undecidable as
well. The reduction of a problem to some seemingly unrelated problem is, of
course, often very tricky.

A description of a Turing machine is the listing of the sets Σ, Γ (where,
as before, the elements of Γ are coded by words over the set Σ0), and the
table of the functions α, β, γ.

Corollary 2.1.6. It is algorithmically undecidable whether a Turing machine
(given by its description) halts on the empty input.

Proof. Let T be a Turing machine whose halting problem is undecidable. We
show that its halting problem can be reduced to the general halting problem
on the empty input. Indeed, for each input x, we can construct a Turing
machine Tx which, when started with an empty input, writes x on the input
tape and then simulates T . If we could decide whether Tx halts then we could
decide whether T halts on x.

Corollary 2.1.7. It is algorithmically undecidable for a one-tape Turing
machine T given by its description whether the set LT is empty.

Proof. For any given one-tape machine S, let us construct a machine T that
does the following: it first erases everything from the tape and then turns
into the machine S. The description of T can obviously be easily constructed
from the description of S. Thus, if S halts on the empty input in finitely
many steps then T halts on all inputs in finitely many steps, hence LT = Σ∗

0

is not empty. If S works for infinite time on the empty input then T works
infinitely long on all inputs, and thus LT is empty. Therefore, if we could
decide whether LT is empty we could also decide whether S halts on the
empty input, which is undecidable.

Obviously, just as its emptiness, we cannot decide any other property P of
LT either if the empty language has it and Σ∗

0 has not, or vice versa. Even a
more general negative result is true. We call a property of a language trivial
if either all recursively enumerable languages have it or none.

Theorem 2.1.8 (Rice’s Theorem). For any non-trivial language-property P ,
it is undecidable whether the language LT of an arbitrary Turing machine T
(given by its description) has this property.

Thus, it is undecidable on the basis of the description of T whether LT is
finite, regular, contains a given word, etc.

2.2. Other undecidable problems 43

Proof. We can assume that the empty language does not have property P
(otherwise, we can consider the negation of P). Let T1 be a Turing machine
for which LT1 has property P . For a given Turing machine S, let us make a
machine T as follows: for input x, first it simulates S on the empty input.
When the simulated S stops it simulates T1 on input x. Thus, if S does not
halt on the empty input then T does not halt on any input, so LT is the
empty language. If S halts on the empty input then T halts on exactly the
same inputs as T1, and thus LT = LT1 . Thus if we could decide whether LT

has property P we could also decide whether S halts on empty input.

2.2 Other undecidable problems

All undecidable problems discussed so far concerned Turing machines; and
their undecidability could be attributed to the fact that we were trying to
decide something about Turing machines using Turing machines. Could it be
that if we get away from this dangerous area of self-referencing, all problems
that we want to decide will be decidable?

Unfortunately, the answer is negative, and there are quite “normal” ques-
tions, arising in all sorts of mathematical areas, that are algorithmically un-
decidable. In this section we describe a few of these, and prove the unde-
cidability of the first one. (For the others, the proof of undecidability is too
involved to be included in this book.)

First we discuss a problem of geometrical nature. A tile, or domino, is
a square, divided into four triangles by its two diagonals, such that each of
these triangles is colored with some color. A kit is a finite set of different tiles,
one of which is a distinguished “favorite tile”. We have an infinite supply of
each tile in the kit.

Given a kit K, a tiling of the whole plane with K (if it exists) assigns to
each position with integer coordinates a tile which is a copy of a tile in K, in
such a way that

• neighboring dominoes have the same color on their adjacent sides;

• the favorite domino occurs at least once.

(Note that rotation is forbidden, otherwise we could tile the whole plane with
our favorite domino alone.)

Problem 2.2.1. Given a kit K, can we tile the whole plane with K?

It is easy to give a kit of dominoes with which the plane can be tiled (e.g.,
a single square that has the same color on each side) and also a kit with
which this is impossible (e.g., a single square that has different colors on each
side). It is, however, a surprising fact that it is algorithmically undecidable
whether a kit allows the tiling of the whole plane!

44 2. Algorithmic decidability

For the exact formulation, let us describe each kit by a word over Σ0 =
{0, 1,+}. This can be done, for example, by describing each color by a
positive integer in binary notation, describing each tile in the kit by writing
down the numbers representing the colors of the four triangles, separated
by the symbol “+”, beginning at the top side, clockwise, and then we join
the expressions obtained this way with “+” signs, starting with the favorite
domino. (But the details of this encoding are of course not important.) Let
LTLNG [resp. LNTLNG] be the set of codes of those kits which tile the plane
[resp. do not tile the plane].

Theorem 2.2.1. The tiling problem is undecidable, i.e., the language LTLNG

is not recursive.

Accepting, for the moment this statement, we can conclude by Theorem
2.1.3 that either the tiling or the nontiling kits must form a language that is
not recursively enumerable. Which one? At first look, we might think that
LTLNG is recursively enumerable: the fact that the plane is tileable by a kit
can be “proved” by exhibiting the tiling. This is, however, not a finite proof,
and in fact the truth is just the opposite:

Theorem 2.2.2. The language LNTLNG is recursively enumerable.

Taken together with Theorem 2.2.1, we see that LTLNG can not even be
recursively enumerable.

In the proof of Theorem 2.2.2, the following lemma will play an important
role.

Lemma 2.2.3. The plane can be tiled by a kit if and only if for every natural
number n the (2n+ 1)× (2n+ 1) square can be tiled with the favorite tile in
the center.

Proof. The “only if” part of the statement is trivial. For the proof of the “if”
part, consider a sequence N1, N2, . . . of tilings of squares such that they all
have odd sidelength and their sidelength tends to infinity. We will construct
a tiling of the whole plane. Without loss of generality, we may assume that
the center of each square is at the origin, so that the origin is covered by the
favorite tile.

Let us consider the 3 × 3 square centered at the origin. This is tiled in
some way in each Ni. Since it can only be tiled in finite number of ways,
there is an infinite number of tilings Ni in which it is tiled in the same way.
Let us keep only these tilings and throw away the rest. So we get an infinite
sequence of tilings of larger and larger squares such that the 3× 3 square in
the middle is tiled in the same way in each Ni. These nine tiles can now be
fixed.

2.2. Other undecidable problems 45

To proceed in a similar fashion, assume that the sequence has been “thinned
out” so that in every remaining tiling Ni, the (2k+1)× (2k+1) square cen-
tered at the origin is tiled in the same way. We fix these (2k + 1)2 tiles.
Then in the remaining tilings Ni, the (2k + 3)× (2k + 3) square centered at
the origin is tiled only in a finite number of ways, and therefore one of these
tilings occurs an infinite number of times. If we keep only these tilings Ni,
then every remaining tiling tiles the (2k + 3) × (2k + 3) square centered at
the origin in the same way, and this tiling contains the tiles fixed previously.
Now we can fix the new tiles around the perimeter of the bigger square.

Every tile will be fixed sooner or later, i.e., we have obtained a tiling of
the whole plane. Since the condition imposed on the covering is “local”, i.e.,
it refers only to two adjacent dominoes, the tiles will be correctly matched
in the final tiling, too.

Proof of Theorem 2.2.2. Let us construct a Turing machine that does the
following. For a word x ∈ Σ∗

0, it first of all decides whether the word encodes
a kit (this is easy); if not then it goes into an infinite cycle. If yes, then
with this set, it tries to tile the squares 1 × 1, 3 × 3, 5 × 5, . . . with the
favorite tile in the center. For each concrete square, it is decidable in a
finite number of steps, whether it can be tiled, since the sides can only be
numbered in finitely many ways by the numbers occurring in the kit, and it
is easy to verify whether among the tilings obtained this way there is one for
which every tile comes from the given kit. If the machine finds a square that
cannot be tiled by the given kit then it halts.

It is obvious that if x /∈ LNTLNG, i.e., x either does not code a kit or
codes a kit which tiles the plane then this Turing machine does not stop.
On the other hand, if x ∈ LNTLNG, i.e., x codes a kit that does not tile
the plane then according to Lemma 2.2.3, for a large enough k already the
square (2k + 1) × (2k + 1) is not tileable either, and therefore the Turing
machine stops after finitely many steps. Thus, according to Lemma 2.1.1,
the language LNTLNG is recursively enumerable.

Proof of Theorem 2.2.1. Let T = 〈k,Σ, α, β, γ〉 be an arbitrary Turing ma-
chine; we will construct from it (using its description) a kit K which can
tile the plane if and only if T does not stop on the empty input. This is,
however, undecidable due to Corollary 2.1.6, so it is also undecidable whether
the constructed kit can tile the plane.

For simplicity, assume k = 1. Assume that T does not halt on the empty
input.

From the machine’s computation, we construct a tiling (see Figure 2.2.1).
We lay down the tape before the first step, to get an infinite strip of squares;
we put below it the tape before the second step, below it the time before the

46 2. Algorithmic decidability

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���������
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

* * * * *

**
* **

*

**

*
**

*

*

* * *

* *
**

* *

S
S *

*

1
1

g g
*
*

2
g’g’

1
1

g
g

g’
g’

3 g

2

2
23 g

S=START

Figure 2.2.1: Tiling resulting from a particular computation

third step, etc. We can think of the upper half of the plane as filled by empty
tapes.

Now we color each square as follows. Each symbol in Σ as well as each
state of the control unit corresponds to a color. Moreover, we need colors for
pairs gh, where g ∈ Γ and h ∈ Σ. Finally, there are five additional colors,
which we call WHITE, RIGHT, LEFT, Right, and Left.

* **

a b c d
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

S

Figure 2.2.2: Tiles in line 0 (b-d) and above (a). S stands for the START
state, vertical strips for color Left and horizontal strips for color Right. Tile
(c) is the favorite tile.

If the content of a cell is a symbol h, and the head is not in this cell before
the corresponding step, then we color the bottom triangle of the cell, as well
as the top triangle of the cell below it with color h. If the head scans this
cell before a given step, and the control unit is in state g, then we color
the top triangle of the square as well as the bottom triangle of the square
above it with color gh. If at this step, the head moves from one cell to an
adjacent cell, we color the two triangles adjacent to the edge crossed with
color g. All triangles in this row adjacent to vertical edges to the left of the

2.2. Other undecidable problems 47

a b c d

h

h
*

*
g'

g'

g'

g'h

h h

h

Figure 2.2.3: Tiles for cells (a) left of the head, (b) just entered from the
right, (c) just entered from the left, (d) right of the head.

b

g

h'

h

g'

hg

g'

h'

g h

g'

h'

a c

Figure 2.2.4: The most important tiles: the head reading h and in state g,
writes h′, goes to state g′, and (a) moves right, (b) stays, (c) moves left.

head are colored LEFT, and those adjacent to vertical edges to the right of
the head are colored RIGHT, except in row 0, where instead the colors Left
and Right are used, and in rows with negative index, where color WHITE is
used. Also WHITE is the color of all upper triangles in row 0 and the tile
with the START in the bottom triangle is the favorite tile. See Figures 2.2.2,
2.2.3 and 2.2.4 for all kinds of tiles that occur in this tiling. Note that this
kit is constructed from the description of the Turing machine easily; in fact,
only one type is dependent on the transition rules of the machine.

We thus obtain a kit KT , with a favorite tile as marked. Our construction
shows that if T runs for an infinite number of steps on the empty input, then
the plane can be tiled with this kit. Conversely, assume that the plane can
be tiled with the kit KT . The favorite tile must occur by definition; left
and right we can only continue with colors Left and Right, and above, with
all-white. Moving down row-by-row we can see that the covering is unique
and corresponds to a computation of machine T on empty input.

Since we have covered the whole plane, this computation is infinite.

Exercise 2.2.1. Show that there is a kit of dominoes with the property that
it tiles the plane but does not tile it doubly periodically (which means that
for some linearly independent integer vectors (p, q) and (r, s) we have the
same domino at (x, y) as at (x+ p, y + q) and at (x+ r, y + s)).

Exercise 2.2.2. Prove that the kits of dominoes that tile the plane doubly
periodically are recursively enumerable.

48 2. Algorithmic decidability

Exercise 2.2.3. Prove the following.

a) There is a function F : Z+ → Z+ for which if the length of the code of
a kit is n and the (2F (n) + 1) × (2F (n) + 1) square can be tiled with
the kit such that the favorite domino is in the center, then the whole
plane can be tiled.

b) Such an F cannot be recursive.

Remark. The tiling problem is undecidable even if we do not distinguish an
initial domino. But the proof of this result is much harder.

We mention some more algorithmically undecidable problems without
showing the proof of undecidability. The proof is in each case a complicated
encoding of the halting problem into the problem at hand.

In 1900, Hilbert formulated 23 problems that he considered then the most
exciting in mathematics. These problems had a great effect on the devel-
opment of the mathematics of the century. (It is interesting to note that
Hilbert thought some of his problems will resist science for centuries; until
today, essentially all of them are solved.) One of these problems was the
following.

Problem 2.2.2 (Diophantine equation). Given a polynomial p(x1, . . . , xn)
with integer coefficients and n variables, decide whether the equation p = 0
has integer solutions.

In Hilbert’s time, the notion of algorithms was not formalized but he
thought that a universally acceptable and always executable procedure could
eventually be found that decides for every Diophantine equation whether
it is solvable. After the clarification of the notion of algorithms and the
finding of the first algorithmically undecidable problems, it became more
probable that this problem is algorithmically undecidable. Davis, Robinson
and Myhill reduced this conjecture to a specific problem of number theory
which was eventually solved by Matiyasevich in 1970. It was found therefore
that the problem of solvability of Diophantine equations is algorithmically
undecidable.

Next, an important problem from algebra. Let us be given n symbols:
a1, . . . , an. The free group generated from these symbols is the set of all
finite words formed from the symbols a1, . . . , an, a−1

1 , . . . , a−1
n in which the

symbols ai and a−1
i never follow each other (in any order). We multiply

two such words by writing them after each other and repeatedly erasing any
pair of the form aia

−1
i or a−1

i ai whenever they occur. It takes some, but
not difficult, reasoning to show that the multiplication defined this way is
associative. We also permit the empty word, this will be the unit element

2.3. Computability in logic 49

of the group. If we reverse a word and change all symbols ai in it to a−1
i

and vice versa then we obtain the inverse of the word. In this very simple
structure, the following problem is algorithmically undecidable.

Problem 2.2.3 (Word problem of groups). In the free group generated by
the symbols a1, . . . , an, we are given n+ 1 words: α1, . . . , αn and β. Is β in
the subgroup generated by α1, . . . , αn?

Next, a problem from the field of topology. Let e1, . . . , en be the unit
vectors of the n-dimensional Euclidean space. The convex hull of the points
0, e1, . . . , en is called the standard simplex. The faces of this simplex are the
convex hulls of subsets of the set {0, e1, . . . , en}. A polyhedron is the union
of an arbitrary set of faces of the standard simplex. Here is a fundamental
topological problem concerning a polyhedron P :

Problem 2.2.4 (contractibility of polyhedra). Can a given polyhedron be
contracted to a single point (continuously, staying within itself)?

We define this more precisely, as follows: we mark a point p in the poly-
hedron first and want to move each point of the polyhedron in such a way
within the polyhedron (say, from time 0 to time 1) that it will finally slide into
point p and during this, the polyhedron “is not torn”. Let F (x, t) denote the
position of point x at time t for 0 ≤ t ≤ 1. The mapping F : P × [0, 1] → P
is thus continuous (in both of its variables together), having F (x, 0) = x and
F (x, 1) = p for all x. If there is such an F then we say that P is “contractible”.
For example, a triangle, taken with the area inside it, is contractible. The
perimeter of the triangle (the union of the three sides without the interior) is
not contractible. (In general, we could say that a polyhedron is contractible
if no matter how a thin circular rubber band is tied on it, it is possible to slide
this rubber band to a single point.) The property of contractibility turns out
to be algorithmically undecidable.

Finally one more, seemingly simple problem that is undecidable.

Problem 2.2.5 (Post correspondence problem). Given two finite lists, (ui, vi);
1 ≤ i ≤ N , where ui ∈ Σ∗

0 and vi ∈ Σ∗
0, is there a sequence i1, i2, . . . , iK such

that ui1ui2 . . . uiK = vi1vi2 . . . viK ?

2.3 Computability in logic

2.3.1 Godel’s incompleteness theorem

Mathematicians have long held the conviction that a mathematical proof,
when written out in all detail, can be checked unambiguously. Aristotle made
an attempt to formalize the rules of deduction, but the correct formalism was

50 2. Algorithmic decidability

found only by Frege and Russell at the end of the nineteenth century. It was
championed as a sufficient foundation of mathematics by Hilbert. We try
to give an overview of the most important results concerning decidability in
logic.

Mathematics deals with sentences, statements about some mathemati-
cal objects. All sentences will be strings in some finite alphabet. We will
always assume that the set of sentences (sometimes also called a language)
is decidable: it should be easy to distinguish (formally) meaningful sentences
from nonsense. Let us also agree that there is an algorithm computing from
each sentence ϕ, another sentence ψ called its negation.

A proof of some sentence T is a finite string P that is proposed as an
argument that T is true. A formal system, or theory F is an algorithm to
decide, for any pairs (P, T) of strings whether P is an acceptable proof T . A
sentence T for which there is a proof in F is called a theorem of the theory F.

Example 2.3.1. Let L1 be the language consisting of all expressions of the
form “l(a, b)” and “ l′(a, b)” where a, b are natural numbers (in their usual,
decimal representation). The sentences l(a, b) and l′(a, b) are each other’s
negations. Here is a simple theory T1. Let us call axioms all “l(a, b)” where
b = a+ 1. A proof is a sequence S1, . . . , Sn of sentences with the following
property. If Si is in the sequence then either it is an axiom or there are j, k < i
and integers a, b, c such that Sj =“l(a, b)”, Sk=“l(b, c)” and Si =“l(a, c)”. This
theory has a proof for all formulas of the form l(a, b) where a < b.

A theory is called consistent if for no sentence can both the sentence
itself and its negation be a theorem. Inconsistent theories are uninteresting,
but sometimes we do not know whether a theory is consistent.

A sentence S is called undecidable in a theory T if neither S nor its
negation is a theorem in T . A consistent theory is complete if it has no
undecidable sentences.

The toy theory of Example 2.3.1 is incomplete since it will have no proof
of either l(5, 3) nor l′(5, 3). But it is easy to make it complete e.g., by adding
as axioms all formulas of the form l′(a, b) where a ≥ b are natural numbers
and adding the corresponding proofs.

Incompleteness simply means that the theory formulates only certain prop-
erties of a kind of system: other properties depend exactly on which system
we are considering. Completeness is therefore not always even a desirable
goal for certain theories. It is, however, if the goal of our theory is to de-
scribe a certain system as completely as we can. We may want e.g., to have
a complete theory of the set of natural numbers in which all true sentences
have proofs. Also, complete theories have the following desirable algorithmic
property, as shown by the theorem below. If there are no (logically) unde-

2.3. Computability in logic 51

cidable sentences in a theory then the truth of all sentences (with respect to
that theory) is algorithmically decidable.

Theorem 2.3.1. If a theory T is complete then there is an algorithm that
for each sentence S finds in T a proof either for S or for the negation of S.

Proof. The algorithm starts enumerating all possible finite strings P and
checking whether P is a proof for S or a proof for the negation of S. Sooner
or later, one of the proofs must turn up, since it exists. Consistency implies
that if one turns up the other does not exist.

Suppose that we want to develop a complete theory of natural numbers.
Since all sentences about strings, tables, etc. can be encoded into sentences
about natural numbers this theory must express all statements about such
things as well. In this way, in the language of natural numbers, one can even
speak about Turing machines, and about when a Turing machine halts.

Let L be some fixed recursively enumerable set of integers that is not
recursive. An arithmetical theory T is called minimally adequate if for
every number n, the theory contains a sentence ϕn expressing the statement
“n ∈ L”; moreover, this statement is a theorem in T if and only if it is true.

It is reasonable to expect that a theory of natural numbers with a goal
of completeness be minimally adequate, i.e., that it should provide proofs
for at least those facts that are verifiable anyway directly by computation, as
“n ∈ L” indeed is. (In the next section, we will describe a minimally adequate
theory.) Now we are in a position to prove one of the most famous theorems
of mathematics, which has not ceased to exert its fascination on people with
philosophical interests:

Theorem 2.3.2 (Gödel’s incompleteness theorem). Every minimally ade-
quate theory is incomplete.

Proof. If the theory were complete then, according to Theorem 2.3.1 it would
give a procedure to decide all sentences of the form n ∈ L, which is impossible
since L is not recursive.

Remarks. 1. Looking more closely into the last proof, we see that for any
adequate theory T there is a natural number n such that though the sentence
“n 6∈ L” is expressible in T and true but is not provable in T . There are
other, more interesting sentences that are not provable, if only the theory T
is assumed strong enough: Gödel proved that the assertion of the consistency
of T is among these. This so-called Second Incompleteness Theorem of Gödel
is beyond our scope.

2. Historically, Gödel’s theorems preceded the notion of computability by
3-4 years.

52 2. Algorithmic decidability

2.3.2 First-order logic

Formulas Let us develop the formal system found most adequate to de-
scribe mathematics. A first-order language uses the following symbols:

• An infinite supply of variables: x, y, z, x1, x2, . . ., to denote elements of
the universe (the set of objects) to which the language refers.

• Some function symbols like f, g, h,+, ·, f1, f2, . . . , where each function
symbol has a property called “arity” specifying the number of argu-
ments of the function it will represent. A function of arity 0 is called
a constant. It refers to some fixed element of the universe. Some
functions, like +, · are used in infix notation.

• Some predicate symbols like <,>,⊂,⊃, P,Q,R, P1, P2, . . ., also of dif-
ferent arities. A predicate symbol with arity 0 is also called a propo-
sitional symbol. Some predicate symbols, like <, are used with infix
notation. The equality “=” is a distinguished predicate symbol.

• Logical connectives: ¬,∨,∧,⇒,⇔,

• Quantifiers: ∀, ∃.

• Parentheses: (,).

A term is obtained by taking some constants and variables and applying
function symbols to them a finite number of times: e.g., (x + 2) + y or
f(f(x, y), g(c)) are terms (here, 2 is a constant).

An atomic formula has the form P (t1, . . . , tk) where P is a predicate
symbol and ti are terms: e.g., x+ y < (x · x) + 1 is an atomic formula.

A formula is formed from atomic formulas by applying repeatedly the
Boolean operations and the adding of prefixes of the form ∀x and ∃x: e.g.,
∀x(x < y) ⇒ ∃zg(c, z) or x = x ∨ y = y are formulas. In the formula
∃y(∀x(F) ⇒ G), the subformula F is called the scope of the x-quantifier. An
occurrence of a variable x in a formula is said to be bound if it is in the scope
of an x-quantifier; otherwise the occurrence is said to be free. A formula with
no free (occurrences of) variables is said to be a sentence; sentences make
formulas which under any given “interpretation” of the language, are either
true of false.

Let us say that a term t is substitutable for variable x in formula A if
no variable y occurs in t for which some free occurrence of x in A is in the
scope of some quantifier of y. If t is substitutable for x in A then we write
A[t/x] for the result of substituting t into every free occurrence of x in A:
e.g., if A = (x < 3− x) and t = (y2) then A[t/x] = (y2 < 3− y2).

From now on, all our formal systems are some language of first-order
logic, so they only differ in what function symbols and predicate symbols are
present.

2.3. Computability in logic 53

There are natural ways to give interpretations to all terms and formulas
of a first-order language in such a way that under such an interpretation, all
sentences become true or false. This interpretation introduces a set called
the universe and assigns functions and predicates over this universe to the
functions (and constants) and predicates of the language.

Example 2.3.2. Consider the language with constants c0, c1 and the two-
argument function symbol f . In one interpretation, the universe is the set of
natural numbers, c0 = 0, c1 = 1, f(a, b) = a + b. In another interpretation,
the universe is {0, 1}, c0 = 0, c1 = 1, f(a, b) = a · b. There are certain
sentences that are true in both of these interpretations but not in all possible
ones: such is ∀x∀y f(x, y) = f(y, x).

For a given theory T , an interpretation of its language is called a model
of T if the axioms (and thus all theorems) of the theory are true in it. In
the above Example 2.3.2, both interpretations are models of the theory T1
defined by the single axiom ∀x∀y f(x, y) = f(y, x).

It has been recognized long ago that the proof checking algorithm can be
made independent of the theory: theories are different only in their axioms.
The algorithm is exactly what we mean by “pure logical reasoning”; for first
order logic, it was first formalized in the book Principia Mathematica by
Russell and Whitehead at the beginning of the 20th century. We will outline
one such algorithm at the end of the present section. Gödel proved in 1930
that if B implies T in all interpretations of the sentences then there is a
proof of the Principia Mathematica type for it. The following theorem is a
consequence.

Theorem 2.3.3 (Gödel’s completeness theorem). Let P be the set of all
pairs (B, T) where B is a finite set of sentences and T is a sentence that is
true in all interpretations in which the elements of B are true. The set P is
recursively enumerable.

Tarski proved that the algebraic theory of real numbers (and with it, all
Euclidean geometry) is complete. This is in contrast to the theories of natural
numbers, among which the minimally adequate ones are incomplete. (In the
algebraic theory of real numbers, we cannot speak of an “arbitrary integer”,
only of an “arbitrary real number”.) Theorem 2.3.1 implies that there is
an algorithm to decide the truth of an arbitrary algebraic sentence on real
numbers. The known algorithms for doing this take a very long time, but are
improving.

Proofs: A proof is a sequence F1, . . . , Fn of formulas in which each formula
is either an axiom or is obtained from previous formulas in the sequence using

54 2. Algorithmic decidability

one of the rules given below. In these rules, A,B,C are arbitrary formulas,
and x is an arbitrary variable.

There is an infinite number of formulas that we will require to be part of
the set of axioms of each theory: these are therefore called logical axioms.
These will not all necessarily be sentences: they may contain free variables.
To give the axioms, some more notions must be defined.

Let F (X1, . . . , Xn) be a Boolean formula of the variables X1, . . . , Xn, with
the property that it gives the value 1 for all possible substitutions of 0 or 1
into X1, . . . , Xn. Let ϕ1, . . . , ϕn be arbitrary formulas. Formulas of the kind
F (ϕ1, . . . , ϕn) are called tautologies.

The logical axioms of our system consist of the following groups:

Tautologies: All tautologies are axioms.

Equality axioms: Let t1, . . . , tn, u1, . . . , un be terms, f a function symbol
and P a predicate symbol, of arity n. Then

(t1 = u1 ∧ · · · ∧ tn = un) ⇒f(t1, . . . , tn) = f(u1, . . . , un),

(t1 = u1 ∧ · · · ∧ tn = un) ⇒(P (t1, . . . , tn) ⇔ P (u1, . . . , un))

are axioms.

The definition of ∃: For each formula A and variable x, the formula
∃xA⇔ ¬∀x¬A is an axiom.

Specialization: If term t is substitutable for variable x in formula A then
∀xA⇒ A[t/x] is an axiom.

The system has two rules:

Modus ponens: From A⇒ B and B ⇒ C, we can derive A⇒ C.

Generalization: If the variable x does not occur free in A then from A⇒ B
we can derive A⇒ ∀xB.

Remark. The generalization rule says that if we can derive a statement B
containing the variable x without using any properties of x in our assumptions
then it is true for arbitrary values of x. It does not say that B ⇒ ∀xB is
true.

For the system above, the following stronger form of Gödel’s completeness
theorem holds.

Theorem 2.3.4. Suppose that B is a set of sentences and T is a sentence
that is true in all interpretations in which the elements of B are true. Then
there is a proof of T in the proof system if we add the sentences of B to the
axioms.

2.3. Computability in logic 55

A simple theory of arithmetic and Church’s Theorem This theoryN
contains two constants, 0 and 1, the function symbols +, · and the predicate
symbol <. There is only a finite number of simple nonlogical axioms (all of
them without quantifier).

¬((x + 1) = 0).

1 + x = 1 + y ⇒ x = y.

x+ 0 = x.

x+ (1 + y) = 1 + (x+ y).

x · 0 = 0.

x · (1 + y) = (x · y) + x.

¬(x < 0).

x < (1 + y) ⇔ (x < y) ∨ (x = y).

(x < y) ∨ (x = y) ∨ (y < x).

Theorem 2.3.5. The theory N is minimally adequate. Thus, there is a
minimally adequate consistent theory of arithmetic with a finite system of
axioms.

This fact implies the following theorem of Church, showing that the prob-
lem of logical provability is algorithmically undecidable.

Theorem 2.3.6 (Undecidability Theorem of Predicate Calculus). The set
P of all sentences that can be proven without any axioms, is undecidable.

Proof. Let N be a finite system of axioms of a minimally adequate consis-
tent theory of arithmetic, and let N be the sentence obtained by taking the
conjunction of all these axioms and applying universal quantification. Let
us remember the definition of “minimally adequate”: we used there a nonre-
cursive r.e. set L of natural numbers. In arithmetic, we can write down a
formula Q(n) saying N ⇒ (n ∈ L). There is a proof for “n ∈ L” in N if and
only if there is a proof for Q(n) from the empty axiom system. But from the
remark after Theorem 2.3.2 it follows that there is an n for which “n ∈ L”
is not provable in N , so Q(n) is also not provable from the empty axiom
system. So if we had a decision procedure for P we could decide, Q(n); since
we cannot, there is no decision procedure for P .

Exercise 2.3.1. Prove that a function is recursive if and only if its graph
{ (x, f(x)) : x ∈ Σ∗

0 } is recursively enumerable.

Exercise 2.3.2. (a) Prove that a language is recursively enumerable if and
only if it can be enumerated without repetition by some Turing machine.

56 2. Algorithmic decidability

(b) Prove that a language is recursive if and only if it can be enumerated
in increasing order by some Turing machine.

Exercise 2.3.3. (a) Construct a language that is not recursively enumerable.

(b) Construct a language that is neither recursive nor recursively enumer-
able.

In the exercises below, we will sometimes use the following notion. A
function f defined on a subset of Σ∗

0 is called partial recursive (abbreviated
as p.r.) if there exists a Turing machine that for any input x ∈ Σ∗

0 will stop
after finite time if and only if f(x) is defined and in this case, it will have
f(x) written on its first tape.

Exercise 2.3.4. Let us call two Turing machines equivalent if for all inputs,
they give the same outputs. Let the function f : Σ∗

0 → {0, 1} be 1 if p, q
are codes of equivalent Turing machines and 0 otherwise. Prove that f is
undecidable.

Exercise 2.3.5. (Inseparability Theorem.) Let U be a one-tape Turing ma-
chine simulating the universal two-tape Turing machine. Let u′(x) be 0 if
the first symbol of the value computed on input x is 0, and 1 if U halts but
this first symbol is not 0. Then u′ is a partial recursive function, defined for
those x on which U halts. Prove that there is no computable total function
which is an extension of the function u′(x). In particular, the two disjoint
r.e. sets defined by the conditions u′ = 0 and u′ = 1 cannot be enclosed into
disjoint recursive sets.

Exercise 2.3.6. (Nonrecursive function with recursive graph.) Give a p.r.
function f that is not extendable to a recursive function, and whose graph is
recursive.

[Hint: use the running time of the universal Turing machine.]

Exercise 2.3.7. Construct an undecidable, recursively enumerable set B of
pairs of natural numbers with the property that for all x, the set { y : (x, y) ∈
B } is decidable, and at the same time, for all y, the set { x : (x, y) ∈ B } is
decidable.

Exercise 2.3.8. Construct an undecidable set S of natural numbers such
that

lim
n→∞

1

n
|S ∩ {0, 1, . . . , n}| = 0.

Can you construct an undecidable set for which the same limit is 1?

Exercise 2.3.9. A rooted tree is a set of “nodes” in which each node has
some “children”, the single “root” node has no parent and each other node

2.3. Computability in logic 57

has a unique parent. A path is a sequence of nodes in which each node is
the parent of the next one. Suppose that each node has only finitely many
children and the tree is infinite. Prove that then the tree has an infinite path.

Exercise 2.3.10. Consider a Turing machine T which we allow now to be
used in the following nonstandard manner: in the initial configuration, it is
not required that the number of nonblank symbols be finite. Suppose that T
halts for all possible initial configurations of the tape. Prove that then there
is an n such that for all initial configurations, on all tapes, the heads of T
stay within distance n of the origin.

Exercise 2.3.11. Let the partial function fT (n) be defined if T , started with
the empty tape, will ever write a nonblank symbol in cell n; in this case, let
it be the first such symbol. Prove that there is a T for which fT (n) cannot
be extended to a recursive function.

Exercise∗ 2.3.12. Show that there is a kit of dominoes with the property
that it tiles the plane but does not tile it recursively.

[Hint: Take the Turing machine of Exercise 2.3.11. Use the kit assigned
to it by the proof of the tiling problem. We will only consider “prototiles”
associated with the lower half-plane. We turn each of these prototiles into
several others by writing a second tape symbol on both the top edge and the
bottom edge of each prototile P in the following way. If the tape symbol
of both the top and the bottom of P is ∗ or both are different from ∗ then
for all symbols h in Σ0, we make a new prototile Ph by adding h to both
the top and the bottom of P . If the bottom of P has ∗ and the top has a
nonblank tape symbol h then we make a new prototile P ′ by adding h to
both the top and the bottom. The new kit for the upper half-plane consists
of all prototiles of the form Ph and P ′.]

Exercise 2.3.13. Let us consider the following modifications of the tiling
problem.

• In P1, tiles are allowed to be rotated 180 degrees.

• In P2, flipping around the vertical axis is allowed.

• In P3, flipping around the main diagonal axis is allowed.

Prove that there is always a tiling for P1, the problem P2 is decidable and
problem P3 is undecidable.

Exercise 2.3.14. Show that the following modification of the tiling problem
is also undecidable. We use tiles marked on the corners instead of the sides
and all tiles meeting in a corner must have the same mark.

58 2. Algorithmic decidability

Exercise 2.3.15. Our proof of Gödel’s theorem does not seem to give a
specific sentence ϕT undecidable for a given minimally adequate theory T .
Show that such a sentence can be constructed, if the language L used in the
definition of “minimally adequate” is obtained by any standard coding from
the non-recursive r.e. set constructed in the proof of the undecidability of the
halting problem.

Chapter 3

Computation with resource

bounds

The algorithmic solvability of some problems can be very far from their prac-
tical solvability. There are algorithmically solvable problems that cannot be
solved, for an input of a given size, in fewer than exponentially or doubly
exponentially many steps (see Theorem 3.3.3). Complexity theory, a major
branch of the theory of algorithms, investigates the solvability of individual
problems under certain resource restrictions. The most important resources
are time and space (storage).

We define these notions in terms of the Turing machine model of computa-
tion. This definition is suitable for theoretical study; in describing algorithms,
using the RAM is more convenient, and it also approximates reality better.
It follows, however, from Theorem 1.3.1 and 1.3.2 that from the point of view
of the most important types of resource restrictions (e.g. polynomial time
and space) it does not matter, which machine model is used in the definition.

This leads us to the definition of various complexity classes: classes of
problems solvable within given time bounds, depending on the size of the in-
put. Every positive function of the input size defines such a class, but some of
them are particularly important. The most central complexity class is poly-
nomial time. Many algorithms important in practice run in polynomial time
(in short, are polynomial). Polynomial algorithms are often very interesting
mathematically, since they are built on deeper insight into the mathematical
structure of the problems, and often use strong mathematical tools.

We restrict the computational tasks to yes-or-no problems; this is not
too much of a restriction, and pays off in what we gain in simplicity of
presentation. Note that the task of computing any output can be broken
down to computing its bits in any reasonable binary representation.

59

60 3. Computation with resource bounds

Most of this chapter is spent on illustrating how certain computational
tasks can be solved within given resource constraints. We start with the most
important case, and show that most of the basic everyday computational
tasks can be solved in polynomial time. These basic tasks include tasks
in number theory (arithmetic operations, greatest common divisor, modular
arithmetic) linear algebra (Gaussian elimination) and graph theory. (We
cannot in any sense survey all the basic algorithms, especially in graph theory;
we will restrict ourselves to a few that will be needed later.)

Polynomial space is a much more general class than polynomial time (i.e., a
much less restrictive resource constraint). The most important computational
problems solvable in polynomial space (but most probably not in polynomial
time) are games like chess or Go. We give a detailed description of this
connection. We end the chapter with a briefer discussion of other typical
complexity classes.

Let us fix some finite alphabet Σ, including the blank symbol ∗ and let
Σ0 = Σ\{∗}. In this chapter, when a Turing machine is used for computation,
we assume that it has an input tape that it can only read (it cannot change
the symbols of the tape and the head cannot move outwards from the ∗’s
delimiting the input) and output tape that it can only write and k ≥ 1 work
tapes. At start, there is a word in Σ∗

0 written on the input tape.
The time demand of a Turing machine T is a function timeT (n) defined as

the maximum of the number of steps taken by T over all possible inputs of
length n. We assume timeT (n) ≥ n (the machine must read the input; this
is not necessarily so but we exclude only trivial cases with this assumption).
It may happen that timeT (n) = ∞.

Similarly, the function spaceT (n) is defined as the maximum number, over
all inputs of length n, of all cells on all but the input and output tapes to
which the machine writes. Note that writing the same symbol which was
read also counts as writing, so this quantity is the number of cells that are
visited by the heads (except the ones on the input or output tape).

A Turing machine T is called polynomial, if there is a polynomial f(n)
such that timeT (n) = O(f(n)). This is equivalent to saying that there is
a constant c such that the time demand of T is O(nc). We say that an
algorithm is polynomial if there is a polynomial Turing machine realizing it.
We can define exponential Turing machines (resp. algorithms) similarly (for
which the time demand is O(2n

c

) for some c > 0), and also Turing machines
(resp. algorithms) working in polynomial and exponential space.

Now we consider a yes-or-no problem. This can be formalized as the task
of deciding whether the input word x belongs to a fixed language L ∈ Σ∗

0.
We say that a language L ∈ Σ∗

0 has time complexity at most f(n), if it can
be decided by a Turing machine with time demand at most f(n). We denote
by DTIME(f(n)) the class of languages whose time complexity is at most

3.0. Computation with resource bounds 61

f(n). (The letter “D” indicates that we consider here only deterministic al-
gorithms; later, we will also consider algorithms that are “non-deterministic”
or use randomness). We denote by PTIME, or simply by P , the class of all
languages decidable by a polynomial Turing machine. We define similarly
when a language has space complexity at most f(n), and also the language
classes DSPACE(f(n)) and PSPACE (polynomial space).

Remarks. 1. It would be tempting to define the time complexity of a lan-
guage L as the optimum time of a Turing machine that decides the language.
Note that we were more careful above, and only defined when the time com-
plexity is at most f(n). The reason is that there may not be a best algorithm
(Turing machine) solving a given problem: some algorithms may work better
for smaller instances, some others on larger, some others on even larger etc.

2. When we say that the multiplication of two numbers of size n can be
performed in time n2 then we actually find an upper bound on the complexity
of a function (multiplication of two numbers represented by the input strings)
rather than a language. The classes DTIME(f(n)), DSPACE(f(n)), etc. are
defined as classes of languages; corresponding classes of functions can also be
defined.

Sometimes, it is easy to give a trivial lower bound on the complexity of
a function. Consider e.g., the function x · y where x and y are numbers in
binary notation. Its computation requires at least |x|+ |y| steps, since this is
the length of the output. Lower bounds on the complexity of languages are
never this trivial, since the output of the computation deciding the language
is a single bit.

How to define time on the RAM machine? The number of steps of the
Random Access Machine is not the best measure of the “time it takes to work”.
One could (mis)use the fact that the instructions operate on natural numbers
of arbitrary size, and develop computational tricks that work in this model
but use such huge integers that to turn them into practical computations
would be impossible. For example, we can simulate vector addition by the
addition of two very large natural numbers.

Therefore, we prefer to characterize the running time of RAM algorithms
by two numbers, and say that “the machine makes at most m steps on num-
bers with at most k bits”. Similarly, the space requirement is best character-
ized by saying that “the machine stores at most m numbers with at most k
bits”.

If we want a single number to characterize the running time of a RAM
computation, we can count as the time of a step not one unit but the num-
ber of bits of the integers involved in it (both register addresses and their
contents). Since the number of bits of an integer is essentially base two loga-

62 3. Computation with resource bounds

rithm of its absolute value, it is also usual to call this model logarithmic cost
RAM.)

In arithmetical and algebraic algorithms, it is sometimes convenient to
count the arithmetical operations; on a Random Access Machine, this corre-
sponds to extending the set of basic operations of the programming language
to include the subtraction, multiplication, division (with remainder) and com-
parison of integers, and counting the number of steps instead of the running
time. If we perform only a polynomial number of operations (in terms of the
length of the input) on numbers with at most a polynomial number of digits,
then our algorithm will be polynomial in the logarithmic cost model.

3.1 Polynomial time

Arithmetic operations

All basic arithmetic operations are polynomial: addition, subtraction, multi-
plication and division of integers with remainder. (Recall that the length of
an integer n as input is the number of its bits, i.e., log2 n+O(1)). We learn
polynomial time algorithms for all these operations in elementary school (lin-
ear time algorithms in the case of addition and subtraction, quadratic time
algorithms in the case of multiplication and division). We also count the
comparison of two numbers as a trivial but basic arithmetic operation, and
this can also be done in polynomial (linear) time.

A less trivial polynomial time arithmetic algorithm is the Euclidean algo-
rithm, computing the greatest common divisor of two numbers.

Euclidean Algorithm. We are given two natural numbers, a and b. Select
one that is not larger than the other, let this be a. If a = 0 then the greatest
common divisor of a and b is gcd(a, b) = b. If a > 0 then let us divide b by a,
with remainder, and let r be the remainder. Then gcd(a, b) = gcd(a, r), and
it is enough, therefore, to determine the greatest common divisor of a and
r. Since r < a, this recurrence will terminate in a finite number of iterations
and we get the greatest common divisor of a and b.

Notice that, strictly speaking, the algorithm given above is not a program
for the Random Access Machine. It is a recursive program, and even as
such it is given somewhat informally. But we know that such an informal
program can be translated into a formal one, and a recursive program can be
translated into a machine-language program (most compilers can do that).

Lemma 3.1.1. The Euclidean algorithm takes polynomial time. More ex-
actly, it carries out O(log a + log b) arithmetical operations on numbers not
exceeding max(a, b) on input (a, b).

3.1. Polynomial time 63

Proof. Since 0 ≤ r < a ≤ b, the Euclidean algorithm will terminate sooner
or later. Let us see that it terminates in polynomial time. Notice that
b ≥ a+ r > 2r and thus r < b/2. Hence ar < ab/2. Therefore after ⌈log(ab)⌉
iterations, the product of the two numbers will be smaller than 1, hence r
will be 0, i.e., the algorithm terminates. Each iteration consist of elementary
arithmetic operations, and can be carried out in polynomial time.

It is an important feature of the Euclidean algorithm that it not only gives
the value of the greatest common divisor, but also yields integers p, q such
that gcd(a, b) = pa + qb. For this, we simply maintain such a form for all
numbers computed during the algorithm. If a′ = p1a+ q1b and b′ = p2a+ q2b
and we divide, say, b′ by a′ with remainder: b′ = ha′ + r′ then

r′ = (p2 − hp1)a+ (q2 − hp2)b,

and thus we obtain the representation of the new number r′ in the form
p′a+ q′b.

Exercise 3.1.1. The Fibonacci numbers are defined by the following recur-
rence: F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 for k > 1. Let 1 ≤ a ≤ b and let
Fk denote the greatest Fibonacci number not greater than b. Prove that the
Euclidean algorithm, when applied to the pair (a, b), terminates in at most k
steps. How many steps does the algorithm take when applied to (Fk, Fk−1)?

Remark. The Euclidean algorithm is sometimes given by the following it-
eration: if a = 0 then we are done. If a > b then let us switch the numbers.
If 0 < a ≤ b then let b := b − a. Mathematically, essentially the same thing
happens (Euclid’s original algorithm was closer to this), this algorithm is not
polynomial: even the computation of gcd(1, b) requires b iterations, which is
exponentially large in terms of the number log b + O(1) of the digits of the
input.

The operations of addition, subtraction, multiplication can be carried out
in polynomial times also in the ring of remainder classes modulo an integerm.
We represent the remainder classes by the smallest nonnegative remainder.
We carry out the operation on these as on integers; at the end, another
division by m, with remainder, is necessary.

If m is a prime number then we can also carry out the division in the field
of the residue classes modulo m, in polynomial time. (This is different from
division with remainder!) For general m we can also carry out division in
polynomial time. Let a, b and m be given integers, such that 0 ≤ a, b ≤ m−1
and gcd(b,m) = 1. Then the result of a divided by b (mod m) is an integer
x with 0 ≤ x < m such that

bx ≡ a (mod m).

64 3. Computation with resource bounds

(Such an x is sometimes denoted by a/b (mod m).)
The way to find x is to apply the Euclidean algorithm to compute the

greatest common divisor of the numbers b and m. Of course, we know in
advance that the result is 1. But as remarked, we also obtain integers p
and q such that bp + mq = 1. In other words, bp ≡ 1 (mod m), and thus
b(pa) ≡ a (mod m). So the quotient x we are looking for is the remainder of
the product pa after dividing by m.

We mention yet another application of the Euclidean algorithm. Sup-
pose that a certain integer x is unknown to us but we know its remain-
ders x1, . . . , xk with respect to the moduli m1, . . . ,mk which are all rel-
atively prime to each other. The Chinese Remainder Theorem says that
these remainders uniquely determine the remainder of x modulo the product
m = m1 · · ·mk. But how can we compute this remainder?

It suffices to deal with the case k = 2 since for general k, the algorithm
follows from this by mathematical induction. We are looking for an integer
x such that x ≡ x1 (mod m1) and x ≡ x2 (mod m2). We also want that
0 ≤ x ≤ m1m2 − 1, but this we can achieve by dividing with remainder at
the end.

In other words, we are looking for integers x, q1 and q2 such that x =
x1 + q1m1 and x = x2 + q2m2. Subtracting, we get x2 − x1 = q1m1 − q2m2.
This equation does not determine the numbers q1 and q2 uniquely, but this
is not important. We can find, using the Euclidean algorithm, numbers q1
and q2 such that

x2 − x1 = q1m1 − q2m2,

and compute x = x1 + q1m1 = x2 + q2m2. Then x ≡ x1 (mod m1) and
x ≡ x2 (mod m2), as desired.

Next, we discuss the operation of exponentiation. Since even to write
down the number 2n, we need an exponential number of digits (in terms of
the length of the input, i.e., the number of binary digits of n), so this number
is not computable in polynomial time. The situation changes, however, if we
want to carry out the exponentiation modulo m: then the residue class of ab

modulo m can be represented by logm+O(1) bits. We will show that it can
be not only represented polynomially but also computed in polynomial time.

Lemma 3.1.2. Let a, b and m be three natural numbers. Then ab (mod m)
can be computed in polynomial time, or more precisely, with O(log b) arith-
metical operations, carried out on natural numbers with O(logm+log a) dig-
its.

Algorithm 3.1.3. Let us write b in binary:

b = 2r1 + · · ·+ 2rk ,

3.1. Polynomial time 65

where 0 ≤ r1 < · · · < rk. It is obvious that rk ≤ log b and therefore k ≤ log b.
Now, the numbers a2

t

(mod m) for 0 ≤ t ≤ log b are easily obtained by
repeated squaring, and then we multiply those k together that make up ab. Of
course, we carry out all operations modulo m, i.e., after each multiplication,
we also perform a division with remainder by m.

Remark. It is not known whether a! mod m or
(

a
b

)

mod m can be computed
in polynomial time.

Algorithms in linear algebra

The basic operations of linear algebra are polynomial: addition and inner
product of vectors, multiplication and inversion of matrices, and the compu-
tation of determinants. However, these facts are non-trivial in the last two
cases, so we will deal with them in detail later in Chapter 9.

Let A = (aij) be an arbitrary n× n matrix consisting of integers.
Let us verify, first of all, that the polynomial computation of det(A) is

not inherently impossible, in the sense that the result can be expressed with
polynomially many bits. Let K = max |aij |, then to write down the matrix
A we need obviously at least L = n2 + logK bits. On the other hand, the
definition of determinants gives

| det(A)| ≤ n!Kn,

hence det(A) can be written down using

log(n!Kn) +O(1) ≤ n(log n+ logK) +O(1)

bits. This is polynomial in L.
Linear algebra gives a formula for each element of det(A−1) as the quotient

of two subdeterminants of A. This shows that A−1 can also be written down
with polynomially many bits.

Exercise 3.1.2. Show that if A is a square matrix consisting of integers,
then to write down det(A) we need at most as many bits as to write up A.
[Hint: If a1, . . . , an are the row vectors of A then | det(A)| ≤ |a1| · · · |an| (this
so-called “Hadamard Inequality” is analogous to the statement that the area
of a parallelogram is smaller than the product of the lengths of its sides).]

The usual procedure to compute the determinant is Gaussian elimination.
We can view this as the transformation of the matrix into a lower triangular
matrix with column operations. These transformations do not change the
determinant, and in the final triangular matrix, the computation of the de-
terminant is trivial: we just multiply the diagonal elements to obtain it. It is

66 3. Computation with resource bounds

also easy to obtain the inverse matrix from this form; we will not deal with
this issue separately.

Gaussian elimination. Suppose that for all i such that 1 ≤ i ≤ t, we have
achieved already that in the i-th row, only the first i entries hold a nonzero
element. Pick a nonzero element from the last n− t columns (stop if there is
no such element). Call this element the pivot element of this stage. Rearrange
the rows and columns so that this element gets into position (t + 1, t + 1).
Subtract column t + 1, multiplied by at+1,i/at+1,t+1, from column i for all
i = t + 2, . . . , n, in order to get 0’s in the elements (t + 1, t + 2), . . . , (t +
1, n). These subtractions do not change the value of the determinant and the
rearrangement changes at most the sign, which is easy to keep track of.

Since one iteration of the Gaussian elimination uses O(n2) arithmetic op-
erations and n iterations must be performed, this procedure uses O(n3) arith-
metic operations. But the problem is that we must also divide, and not with
remainder. This does not cause a problem over a finite field, but it does in
the case of the rational field. We assumed that the elements of the original
matrix are integers; but during the run of the algorithm, matrices also occur
that consist of rational numbers. In what form should these matrix elements
be stored? The natural answer is as pairs of integers (whose quotient is the
rational number).

Do we require that the fractions be in simplified form, i.e., that their
numerator and denominator be relatively prime to each other? We could
do so; then we have to simplify each matrix element after each iteration,
for which we would have to perform the Euclidean algorithm. This can be
performed in polynomial time, but it is a lot of extra work, and it is desirable
to avoid it. (Of course, we also have to show that in the simplified form, the
occurring numerators and denominators have only polynomially many digits.
This will follow from the discussions below.)

We could also choose not to require that the matrix elements be in simpli-
fied form. Then we define the sum and product of two rational numbers a/b
and c/d by the following formulas: (ad + bc)/(bd) and (ac)/(bd). With this
convention, the problem is that the numerators and denominators occurring
in the course of the algorithm can become very large (have a nonpolynomial
number of digits)!

Fortunately, we can give a procedure that stores the fractions in partially
simplified form, and avoids both the simplification and the excessive growth
of the number of digits. For this, let us analyze a little the matrices occurring
during Gaussian elimination. We can assume that the pivot elements are, as
they come, in positions (1, 1), . . . , (n, n), i.e., we do not have to permute the
rows and columns. Let (a

(k)
ij) (1 ≤ i, j ≤ n) be the matrix obtained after

k iterations. Let us denote the elements in the main diagonal of the final
matrix, for simplicity, by d1, . . . , dn (thus, di = a

(n)
ii). Let D(k) denote the

3.1. Polynomial time 67

submatrix determined by the first k rows and columns of matrix A, and let
D

(k)
ij , for k + 1 ≤ i, j ≤ n, denote the submatrix determined by the first

k rows and the i-th row and the first k columns and the j-th column. Let
d
(k)
ij = det(D

(k)
ij). Obviously, det(D(k)) = d

(k−1)
kk .

Lemma 3.1.4.

a
(k)
ij =

d
(k)
ij

det(D(k))
.

Proof. If we compute det(D
(k)
ij) using Gaussian elimination, then in its main

diagonal, we obtain the elements d1, . . . , dk, a
(k)
ij . Thus

d
(k)
ij = d1 · · · dk · a(k)ij .

Similarly,
det(D(k)) = d1 · · · dk.

Dividing these two equations by each other, we obtain the lemma.

By this lemma, every number occurring in the Gaussian elimination can be
represented as a fraction both the numerator and the denominator of which
is a determinant of some submatrix of the original A matrix. In this way, a
polynomial number of digits is certainly enough to represent all the fractions
obtained.

However, it is not necessary to compute the simplifications of all fractions
obtained in the process. By the definition of Gaussian elimination we have
that

a
(k+1)
ij = a

(k)
ij −

a
(k)
i,k+1a

(k)
k+1,j

a
(k)
k+1,k+1

and hence using Lemma 3.1.4

d
(k+1)
ij =

d
(k)
ij d

(k)
k+1,k+1 − d

(k)
i,k+1d

(k)
k+1,j

d
(k−1)
k,k

.

This formula can be considered as a recurrence for computing the numbers
d
(k)
ij . Since the left-hand side is an integer, the division can be carried out

exactly. Using the above considerations, we find that the number of digits in
the quotient is polynomial in terms of the size of the input.

Remarks. 1. There are at least two further possibilities to remedy the
problem of the fractions occurring in Gaussian elimination.

We can approximate the numbers by binary “decimals” of limited accuracy
(as it seems natural from the point of view of computer implementation),

68 3. Computation with resource bounds

allowing, say, p bits after the binary “decimal point”. Then the result is only
an approximation, but since the determinant is an integer, it is enough to
compute it with an error smaller than 1/2. Using the methods of numerical
analysis, it can be determined how large p must be chosen to make the error
in the end result smaller than 1/2. It turns out that a polynomial number of
digits are enough, and this also leads to a polynomial algorithm.

The third possibility is based on the remark that if m > | det(A)| then it is
enough to determine the value of det(A) modulo m. If m is a prime number
then computing modulo m, we do not have to use fractions at all. Since we
know that | det(A)| < n!Kn it is enough to choose for m a prime number
greater than n!Kn.

It is, however, not that simple to select such a large prime (see Chapter 5).
An easier method is to choosem as the product of different small primes: m =
2·3 · · · pk where for k we can choose, e.g., the total number of bits occurring in
the representation of A. Then it is easy to compute the remainder of det(A)
modulo pi for all pi, using Gaussian elimination in the field of residue classes
modulo pi. Then we can compute the remainder of det(A) modulo m using
the Chinese Remainder Theorem. (Since k is small we can afford to find the
first k primes simply by brute force. But the cost of this computation must
be judged differently anyway since the same primes can then be used for the
computation of arbitrarily many determinants.)

2. The modular method is successfully applicable in a number of other cases.
One way to look at this method is to consider it as an encoding of the integers
in a way different from the binary (or decimal) number system: we code the
integer n by its remainder after division by the primes 2,3, etc. This is an
infinite number of bits, but if we know in advance that no number occurring
in the computation is larger than N then it is enough to consider the first
k primes whose product is larger than N . In this encoding, the arithmetic
operations can be performed very simply, and even in parallel for the different
primes. Comparison by magnitude is, however, awkward.

Graph algorithms

The most important algorithms of graph theory are polynomial. It is im-
possible to survey this topic in this course; graph algorithms can fill several
books. We restrict ourselves to a brief discussion of a few examples that
provide particularly important insight into some basic techniques. We will
group our examples around two algorithmic methods: searching a graph and
augmenting paths.

3.1. Polynomial time 69

How is a graph given?

Perhaps the most natural way to describe a graph is by its adjacency matrix.
However, if a graph is sparse, i.e., it has much less edges than n2, e.g., O(n)
or O(n log n), then it can be encoded much more efficiently by its edge list.
In an edge list we simple enumerate for each vertex its neighbors in some
order. The space requirement of this representation has the same order of
magnitude as the number of edges. The following algorithms work for edge
list representations much faster for sparse graphs.

Exercise 3.1.3. Give a polynomial time algorithm that converts the adja-
cency matrix into an edge list and vice versa.

Searching a graph

a) General search and connectivity testing. Perhaps the most funda-
mental question to ask about a graph is whether or not it is connected. If
not, we often want to find its connected components.

These tasks are trivial to do in polynomial time, in a variety of ways. The
reason why we describe a solution is because its elements will be useful later.

Let G be a graph. Select any node r. Build up a tree T as follows. At
the beginning, T consists of just r. At any stage, we check if there is an edge
between the nodes of T and the rest of the nodes. If there is such an edge,
we add it to T , together with its endnode outside T . If not, then we know
that G is disconnected and T is a spanning tree of a connected component.
We can delete the nodes of T from the graph and proceed recursively.

It is customary to call the nodes of T labeled. The usual way to look for
an edge between a labeled and an unlabeled node is to look at the labeled
nodes and investigate the edges going out of them. A simple but important
observation is that if at one stage we find that none of the edges of a given
labeled node goes to an unlabeled node, then we don’t need to investigate
this node at any other later stage (since only an unlabeled node can become
labeled, not vice versa). Therefore, we can mark this node as taken care of,
or scanned. At any time, we only need to look at those nodes that are labeled
but not scanned.

This general labeling-scanning procedure is called searching the graph.

b) Breadth-First-Search and shortest paths. Specializing the order
in which we investigate edges going out of the labeled nodes, we get special
search algorithms that are good for solving different kinds of graph problems.
Perhaps the simplest such specialization is breadth-first-search. The problem
is to find a shortest path in a graph from a distinguished node s (the source) to
a distinguished node t (the sink). The solution of this problem is very simple
once we embed it in a larger family of problems; we ask for the shortest path

70 3. Computation with resource bounds

from the source s to every other node of the graph. Proceed recursively: label
the neighbors of the source s with a 1. Label with k those unlabeled vertices
which are neighbors of vertices of label k − 1. Then the label of each node
is its distance from s. (This method is perhaps the simplest example of a
technique called dynamic programming.)

This idea reappears in the more general problem of finding a shortest path
from s to t in a graph with weighted edges. (The weight cij on the edge {i, j}
is interpreted as the length of the edge, so we do not allow negative weights.)
Again we embed this problem in the larger family of problems which asks for
a shortest (minimum weight) path from s to every other node of the graph.

Dijkstra’s algorithm recognizes that a path between two vertices may be
of minimum weight even if other paths have fewer edges. So if we begin at
the source, among all neighbors j of s, find one such that the edge sj has
minimum weight csj . We can confidently assert that the shortest path in
the graph from s to this neighbor has length csj , but we are not sure about
the other neighbors of s. So label this one neighbor csj . You may think
of s as labeled with a 0. In the course of the algorithm we maintain a set
T of vertices, each of which we have confidently labeled with the minimum
weight of a path from s to it. Call this label d(s, j), the distance from s to
the node j. These minimum weight paths pass only through vertices already
in T . At each step of the algorithm, we consider vertices on the frontier of
T (vertices not in T which are neighbors of vertices in T). Consider edges
ij between vertices i in T and vertices j in this frontier. An upper bound
for the minimum weight of a path from s to j is the smallest of the numbers
d(s, i) + cij where i is in T . Find i ∈ T and j which minimize d(s, i) + cij .
We can confidently label such a node j with d(s, j) = d(s, i) + cij and add j
to T for the following reason: Any path from s to j must leave the set T at
a node i′ then pass through a node j′ of the frontier. Hence this competing
path from s to j has length at least d(s, i′) + ci′j′ . By our choice of i and
j, the path from s to i in T then immediately to j has length no greater
d(s, i′) + ci′j′ (Figure 3.1.1).

c) Depth-First-Search, 2-connected components, and planarity.

Another special search algorithm is depth-first-search. Here we start with
any node (called root) and visit every vertex in its connectivity component
by always moving to a yet unvisited neighbor of the actual vertex, if exists.
If not, we go back to the vertex where we came from. (For disconnected
graphs, one usually continues by picking a new starting node as root for each
component.) This search builds up a spanning tree (or forest for disconnected
graphs) that has several interesting properties, e.g., each edge of the graph is
between two vertices that are on the same branch (starting from the root).
We omit the detailed applications of this method, but it can be used to find

3.1. Polynomial time 71

T

i j

s
t

Figure 3.1.1: Dijkstra’s shortest path algorithm

efficiently the 2-connected components of a graph or to check whether a graph
can be drawn in the plane without crossing edges.

Exercise 3.1.4. Give a fast algorithm that determines the 2-connected com-
ponents of a graph.

Maximum bipartite matching and alternating paths

Let G be a graph; we want to find a maximum size matching in G (recall that
a matching is a subset of the edges having mutually no endpoint in common).
A matching is perfect if it meets every node. We describe a polynomial time
algorithm that finds a maximum size matching in a bipartite graph.

Assume that we have a matching M ; how can we see whether M is max-
imum? One answer to this question is provided by the following simple
criterion due to Berge. An alternating path (with respect to M) is a path in
which every other edge belongs to M (the path may start with an edge of M
or with an edge not in M). An alternating path is augmenting if it starts and
ends with an edge not in M , and moreover, its endpoints are not incident to
any edge of M . (An augmenting path has necessarily odd length.)

Lemma 3.1.5. A matching in G is maximum size if and only if there is no
augmenting path with respect to it.

Proof. It is obvious that if we have an augmenting path P with respect to
M , then we can improve M ; we can replace in M the edges of P ∩M by the
edges of P \M , to get a larger matching.

72 3. Computation with resource bounds

Conversely, if M is not maximum, and there exists a larger matching
M ′, then consider the connected components of M ∪M ′. These are either
alternating paths or alternating circuits with respect to M . At least one such
component must contain more edges of M ′ than of M : this component is an
augmenting path with respect to M .

This fact is not very deep since it relates the existence of something (a
larger matching) to the existence of something else (an augmenting path).
But it does give a motivation for most of the known polynomial time matching
algorithms: one can look for an augmenting path by building up a search tree.

Given a bipartite graph G = (A,B), we want to find a maximal matching
M . We use the notion of alternating trees. Given a matching M , we call a
vertex of the graph exposed (by M) if it is not covered by M . An alternating
tree is a subgraph of G which contains exactly one exposed node r; for which
every node at odd distance from r has degree 2 in the tree; such that along any
path from r every other edge belongs to the matching; and whose endpoints
are all at even distance from r.

The vertices of the tree at even distance from r (including r itself) are
called outer nodes, and the vertices at odd distance from r are called inner
nodes.

An alternating forest is a forest such that every component is an alternating
tree, and every exposed node of the graph is contained in the forest.

If we have a matching M and would like to extend it, we take an exposed
vertex r and try to match it to a neighbour; but the neighbor may already
be in the matching, so we leave this edge out; this creates a new exposed
node which we try to match etc. This leads to the notion of alternating
paths. Searching for alternating paths from an exposed node r leads to the
construction of an alternating tree.

Now we describe the algorithm. We start with the empty matching and
the alternating forest consisting of all nodes and no edges. At every stage,
either we can increase the size of the matching (deleting some edges but
adding more) or we can extend the forest already constructed (and keeping
the matching unchanged), or we are stuck and the matching is optimal.

Suppose that we already have a candidate matching M and alternating
forest F with respect to M .

Case 1. If there is an edge e connecting two outer nodes of the forest,
then these nodes must belong to different trees since the graph is bipartite.
Let u and v be the exposed nodes of the two trees. We have an alternating
path from u to v, and switching the matching edges along the path we get a
new matching M ′ with one more edge than M . The forest consisting of all
exposed points of M ′ is alternating with respect to M ′. (See Figure 3.1.2).

Case 2. Otherwise, if there is an edge connecting an outer node p of the
forest to a vertex u of V (G) \ V (F), this vertex u cannot be exposed from

3.1. Polynomial time 73

u v

e e

u v

Figure 3.1.2: Extending a bipartite graph matching

p
u

v

p

u

v

Figure 3.1.3: Extending an alternating forest

the definition of an alternating forest. Hence it is the endpoint of an edge of
the matching, say uv. Vertex v is also in V (G) \ V (F) (otherwise u would
have to be in F), and so we can extend F by adding the edges pu and uv.
(See Figure 3.1.3).

Case 3. If neither of the cases above applies, the outer points must be
connected to inner points only. A simple but crucial counting argument
will show that the matching must be optimal. (We will use this counting
argument several times in this section.)

There is one exposed vertex in every component of F , and none outside
F , so the total number of exposed points of the matching is equal to the
number of components of F . Each outer point of the trees of F is matched
to an inner point, which is its predecessor in the tree, except for the exposed
vertex of each tree. Thus

#outer points = #inner points +#exposed points.

74 3. Computation with resource bounds

Let D be the set of outer vertices and A be the set of inner vertices of F .
The neighbor set of D in the graph is included in A, the number of exposed
points of M is exactly |D| − |A|.

Let M ′ be any matching of the graph. M ′ can only match points of D
to points of A, and must therefore leave at least |D| − |A| points exposed.
Hence M is a maximum matching.

Thus we have a valid algorithm for finding a maximum matching in a
bipartite graph. At every step we must consider at most n2 edges, and since
the size of M or of F increases at each step, there are at most n2 steps, hence
a O(n4) algorithm.

Remark. Simple considerations enable to reduce the running time to O(n3).
It is possible, but quite difficult, to reduce it further to O(n2.5). It is also
possible to modify the algorithm so that it works for general graphs (and not
only for bipartite).

3.2 Other complexity classes

a) Exponential time. Checking “all cases” by “brute force” usually leads to
exponential time algorithms, i.e., algorithms that run for somewhere between
2n

a

and 2n
b

many steps for some a, b > 0. For example, to decide whether
a graph has a proper coloring with 3 colors, the trivial algorithm checks all
possible colorings. This means checking all 3n cases (here n denotes the
number of vertices); each case takes O(n2) time. (Unfortunately although
the 3n can be reduced, for this problem we do not know any non-exponential
time algorithm, moreover, as we will see in Chapter 4, such an algorithm is
not very likely to exist. We will show that graph coloring belongs to a special
class of problems.)

b) Linear time. Several arithmetic operations (addition, comparison of two
numbers) requires linear time.

Linear time algorithms are most important if we have to perform simple
operations on very large inputs, thus most data handling algorithms have
linear time. In the previous section we have seen linear time graph algorithms
as well.

An algorithm is called quasi-linear time if it runs in O(n(log n)c) steps
where c is a constant. The most important problem that falls in this calls
is sorting, for which several quasi-linear time algorithms are known. We can
also find important quasi-linear time algorithms in geometric algoritms and
image processing (e.g., to determine the convex hull of n planar points also
requires quasi-linear time).

3.2. Other complexity classes 75

c) Polynomial space=PSPACE. Obviously, all polynomial time algo-
rithms require only polynomial space, but polynomial space is significantly
more general: many exponential time algorithms need only polynomial space.
(It is clear that using polynomial space, we terminate in exponential time or
never: if the same configuration (state of the machine, position of heads,
contents of tape) is repeated, then we are in cycle).

For example, the space requirement of the trivial graph coloring algorithm
discussed in a) is polynomial (even linear): if we survey all colorings in lexico-
graphic order then it is sufficient to keep track of which coloring is currently
checked and for which edges has it already been checked whether they con-
nect points with the same color. In a similar way, we could carry out in
polynomial space every brute force algorithm that tries to find in a graph a
Hamiltonian cycle, the largest clique, etc.

The most typical example for a polynomial-space algorithm is finding the
optimal step in a 2-person game like chess, by searching through all possible
continuations.

Let us describe a general model for a “chess-like” game.
We assume that every given position of a game can be described by a word

x of length n over some finite alphabet Σ (typically, telling the position of
the pieces on the board, the name of the player whose turn it is and possibly
some more information, e.g., in the case of chess whether the king has moved
already, etc.). An initial configuration is distinguished. We assume that the
two players take turns and have a way to tell, for two given positions whether
it is legal to move from one into the other, by an algorithm taking polynomial
time.1 If there is no legal move in a position then it is a terminal position
and a certain algorithm decides in polynomial time, who won. We assume
that the game is always finished in nc steps.

A position is winning for the player whose turn it is if there is a strategy
that, starting from this position, leads to the victory of this player no matter
what the other player does. A position is losing if no matter what move the
player makes, his opponent has a winning strategy. Since the game is finite,
every position is either a winning or losing position. Note that

• every legal move from a losing position leads to a winning position;

• there is a move from any winning position that leads to a losing position.

We can visualize a game as a huge rooted tree. The root is labeled by the
starting position. The children of the root are labeled by the positions that
can be reached from the starting position by a legal move. Similarly, each
node i of the tree is labeled by a position xi in the game, and its children are

1It would be sufficient to assume polynomial space but it makes the game rather boring

if it takes more than polynomial time to decide whether a move is legal or not.

76 3. Computation with resource bounds

labeled by the positions that can be reached from xi by a legal move. The
leaves of the tree are the terminal positions.

Note that the same position may occur more than once as a label, if there
are different sequences of legal moves leading to that position. A node of the
tree corresponds to a subgame, i.e., to a sequence x0, x1, . . . , xk of positions
such that a legal step leads from each position xi into xi+1. (We could
identify nodes of the tree that correspond to the same position, and work
on the resulting graph, which is not a tree any more. However, it is more
transparent to have the whole tree around.)

We describe an algorithm that decides about each position in such a game
whether it is a winning or losing position. The algorithm works in polynomial
space but exponential time.

Roughly speaking, we search the game-tree in a depth-first-search manner,
and label positions “winning” and “losing”.

At a given step, the machine analyzes all possible continuations of some
subgame x0, x1, . . . , xk. It will always be maintained that among all continu-
ations of x0, x1, . . . , xi (0 ≤ i ≤ k) those that come before xi+1 (with respect
to the lexicographical ordering of the words of length n) are “bad steps”, i.e.,
they are either illegal moves or lead to a winning position (the position is
winning for the other player, so to go there is a bad move!). In other words,
if there are “good” moves at all, the algorithm finds the lexicographically
first good move. The algorithm maintains the last legal continuation y of xk
it has studied (or that no such continuation was found yet). All the legal
continuations that come before y lead to winning positions.

The algorithm looks at the words of length n following y in lexicographical
order, to see whether they are legal continuations of xk. If it finds one, this is
xk+1 and goes on to examine the one longer partial game obtained this way.
If it does not find such a move, and it did not find any legal moves from this
position, then this position is terminal, and the algorithm marks it “winning”
or “losing” according to the game rules. If there was at least one legal move
from xk, then we know that all legal moves from this position lead to winning
positions, so this position is losing. The algorithm marks it so, and removes
xk from the partial game. It also marks xk−1 as winning (all you have to do
to win is to move to xk), and removes it from the partial game.

Eventually, the root gets labeled, and that tells who wins in this game.
Finally, most trivial counting algorithms require polynomial space but

exponential time. e.g., to determine the number of proper 3 colorings of a
graph, we can check all 3 colorings and add 1 to a counter for each coloring
that is proper.

d) Linear space. This basic class is similar to polynomial space. It includes
graph algorithms that can be described by operating with labels of vertices
and edges, such as connectivity, hungarian method, shortest path, maximum

3.3. General theorems on space and time complexity 77

flow. Most fixed precision numerical algorithms belong here. Nowadays in
data mining due to the enormous size of the date almost only linear space
algorithms are used. Breadth-first-search discussed in section 3.1 b) also
belongs here.

e) Logarithmic space =LOGSPACE. This is another much investigated,
important class. On one hand, it can be important when computing functions
(remember that the input and the output tape do not count towards the space
used!), on the other hand it is also important in case of decision problems
(in which case we denote DSPACE(O(log n)) simply by L). In 2004 it was a
groundbreaking result when Reingold has shown that the problem of deciding
whether two given vertices of a graph are in the same connectivity component
or not (known as USTCONN) is in L. (Interestingly about the similar problem
for directed graph it is not known whether it is in L or not, thought most
experts think it is not.)

Exercise 3.2.1. Suppose that f and g are log-space computable functions.
Show that their composition, f ◦ g is also log-space computable.

3.3 General theorems on space and time

complexity

If for a language L there is a Turing machine deciding L for which for all
large enough n the relation timeT (n) ≤ f(n) holds, then there is also a Turing
machine deciding L for which this inequality holds for all n. Indeed, for small
values of n we assign the task of deciding the language to the control unit.

It can be expected that for the price of further complicating the machine,
the time demands can be decreased. The next theorem shows the machine
can indeed be accelerated by an arbitrary constant factor, at least if its time
need is large enough (the time spent on reading the input cannot be saved).

Theorem 3.3.1 (Linear Speedup Theorem). For every Turing machine T
and c > 0 there is a Turing machine S over the same alphabet which decides
the same language and for which timeS(n) ≤ c · timeT (n) + n.

Proof. For simplicity, let us assume that T has a single work tape (the proof
would be similar for k tapes). We can assume that c = 2/p where p is an
integer.

Let the Turing machine S have an input-tape, 2p− 1 “starting” tapes and
2p− 1 further work tapes. Let us number these each from 1− p to p− 1. Let
the index of cell j of (start- or work) tape i be the number j(2p−1)+ i. The
start- or work cell with index t will correspond to cell t on the input resp.
worktape of machine T . Let S also have an output tape.

78 3. Computation with resource bounds

Machine S begins its work by copying every letter of input x from its input
tape to the cell with the corresponding index on its starting tapes, then moves
every head back to cell 0. From then on, it ignores the “real” input tape.

Every further step of machine S will correspond to p consecutive steps of
machine T . After pk steps of machine T , let the scanning head of the input
tape and the work tape rest on cells t and s respectively. We will plan machine
S in such a way that in this case, each cell of each start- resp. worktape of S
holds the same symbol as the corresponding cell of the corresponding tape of
T , and the heads rest on the starting-tape cells with indices t− p+1, . . . , t+
p− 1 and the work-tape cells with indices s− p+1, . . . , s+ p− 1. We assume
that the control unit of machine S “knows” also which head scans the cell
corresponding to t resp. s. It knows further what is the state of the control
unit of T .

Since the control unit of S sees not only what is read by T ’s control unit
at the present moment on its input- and worktape but also the cells at a
distance at most p− 1 from these, it can compute where T ’s heads will step
and what they will write in the next p steps. Say, after p steps, the heads
of T will be in positions t + i and s + j (where, say, i, j > 0). Obviously,
i, j < p. Notice that in the meanwhile, the “work head” could change the
symbols written on the work tape only in the interval [s− p+ 1, s+ p− 1].

Let now the control unit of S do the following: compute and remember
what will be the state of T ’s control unit p steps later. Remember which
heads rest on the cells corresponding to the positions (t+ i) and (s+ j). Let
it rewrite the symbols on the work tape according to the configuration p steps
later (this is possible since there is a head on each work cell with indices in
the interval [s−p+1, s+p−1]). Finally, move the start heads with indices in
the interval [t−p+1, t−p+ i] and the work heads with indices in the interval
[s− p+1, s− p+ j] one step right; in this way, the indices occupied by them
will fill the interval [t+p, t+p+ i−1] resp. [s+p, s+p+ i−1]which, together
with the heads that stayed in their place, gives interval [t+i−p+1, t+i+p−1]
resp. [s+ j − p+ 1, s+ j + p− 1].

If during the p steps under consideration, T writes on the output tape
(either 0 or 1) and stops, then let S do this, too. Thus, we constructed a
machine S that (apart from the initial copying that takes n + n/p ≤ n +
timeT (n)/p steps) makes only a p-th of the number of steps of T and decides
the same language.

Exercise∗ 3.3.1. For every Turing machine T and c > 0, one can find a
Turing machine S with the same number of tapes that decides the same
language and for which timeS(n) ≤ c · timeT (n) + n (here, we allow the
extension of the alphabet).

3.3. General theorems on space and time complexity 79

Exercise 3.3.2. Formulate and prove the analogue of the above problem for
storage in place of time.

It is trivial that the storage demand of a k-tape Turing machine is at
most k times its time demand (since in one step, at most k cells will be
written). Therefore, if we have L ∈ DTIME(f(n)) for a language then there
is a constant k (depending on the language) such that L ∈ DSPACE(k ·f(n)).
(If extending the alphabet is allowed and f(n) > n then DSPACE(k ·f(n)) =
DSPACE(f(n)) and thus it follows that DTIME(f(n)) ⊆ DSPACE(f(n)).)
On the other hand, the time demand is not greater than an exponential
function of the space demand (since exactly the same memory configuration,
taking into account also the positions of the heads and the state of the control
unit, cannot occur more than once without getting into a cycle). Computing
more precisely, the number of different memory configurations is at most
c·n·f(n)k(2m)f(n) wherem is the size of the alphabet. (Here c is the possible
states, n the position of the head on the input tape, f(n)k is the position of
the other heads and (2m)f(n) is the description of the tape contents where
the 2· is needed to mark the end of the tapes.)

Since according to the above, the time complexity of a language does not
depend on a constant factor, and in this upper bound the numbers c, k,m
are constants, it follows that if f(n) > logn and L ∈ DSPACE(f(n)) then

L ∈ DTIME((m+ 1)f(n)). So DSPACE(f(n)) ⊆
∞
⋃

c=1
DTIME(cf(n)).

Theorem 3.3.2. There is a function f(n) such that every recursive language
is an element of DTIME(f(n)).

Proof. There are only countably many Turing machines, so there are only
countably many that halt for every input. Take an enumeration T1, T2, . . . of
these machines. Define f as

f(n) := max
i≤n

timeTi(n).

If L is recursive, there is a Tj that decides L in timeTj (n) time. This is at
most f(n) if n ≥ j, so (using the observation made in the first sentence of
this section) there is a Turing machine T that decides L in f(n) time for
all n.

A recursive language can have arbitrarily large time (and, due to the above
inequality, also space-) complexity. More precisely:

Theorem 3.3.3. For every recursive function f(n) there is a recursive lan-
guage L that is not an element of DTIME(f(n)).

80 3. Computation with resource bounds

Proof. The proof is similar to the proof of the fact that the halting problem
is undecidable. We can assume f(n) > n. Let T be the 2-tape universal
Turing machine constructed in Chapter 1, and let L consist of all words x
for which it is true that having x as input on both of its tape, T halts in at
most f(|x|)4 steps. L is obviously recursive.

Let us now assume that L ∈ DTIME(f(n)). Then there is a Turing
machine (with some k > 0 tapes) deciding L in time f(n). From this we can
construct a 1-tape Turing machine deciding L in time cf(n)2 (e.g., in such a
way that it stops and writes 0 or 1 as its decision on a certain cell). Since for
large enough n we have cf(n)2 < f(n)3, and the words shorter than this can
be recognized by the control unit directly, we can also make a 1-tape Turing
machine that always stops in time f(n)3. Let us modify this machine in such
a way that if a word x is in L then it runs forever, while if x ∈ Σ∗

0 \ L then
it stops. This machine be S can be simulated on T by some program p in
such a way that T halts with input (x, p) if and only if S halts with input x;
moreover, it halts in these cases within |p|f(|x|)3 steps.

There are two cases. If p ∈ L then—according to the definition of L—
starting with input p on both tapes, machine T will stop. Since the program
simulates S it follows that S halts with input p. This is, however, impossible,
since S does not halt at all for inputs from L.

On the other hand, if p 6∈ L then—according to the construction of S—
starting with p on its first tape, this machine halts in time |p|f(|p|)3 < f(|p|)4.
Thus, T also halts in time f(|p|)4. But then p ∈ L by the definition of the
language L.

This contradiction shows that L 6∈ DTIME(f(n)).

There is also a different way to look at the above result. For some fixed
universal two-tape Turing machine U and an arbitrary function t(n) > 0,
the t-bounded halting problem asks, for n and all inputs p, x of maxi-
mum length n, whether the above machine U halts in t(n) steps. (Similar
questions can be asked about storage.) This problem seems decidable in t(n)
steps, though this is true only with some qualification: for this, the func-
tion t(n) must itself be computable in t(n) steps (see the definition of “fully
time-constructible” below). We can also expect a result similar to the unde-
cidability of the halting problem, saying that the t-bounded halting problem
cannot be decided in time “much less” than t(n). How much less is “much
less” here depends on some results on the complexity of simulation between
Turing machines.

We call a function f : Z+ → Z+ fully time-constructible if there is
a multitape Turing machine that for each input of length n uses exactly
f(n) time steps. The meaning of this strange definition is that with fully
time-constructable functions, it is easy to bound the running time of Turing
machines: If there is a Turing machine making exactly f(n) steps on each

3.3. General theorems on space and time complexity 81

input of length n then we can build this into any other Turing machine as
a clock: their tapes, except the input tape, are different, and the combined
Turing machine carries out in each step the work of both machines.

Obviously, every fully time-constructible function is recursive. On the
other hands, it is easy to see that n2, 2n, n! and every “reasonable” function
is fully time-constructible. The lemma below guarantees the existence of
many completely time-constructable functions.

Let us call a function f : Z+ → Z+ well-computable if there is a Turing
machine computing f(n) in time O(f(n)). (Here, we write n and f(n) in
unary notation: the number n is given by a sequence 1 . . . 1 of length n and
we want as output a sequence 1 . . . 1 of length f(n). The results would not be
changed, however, if n and f(n) were represented e.g., in binary notation.)
Now the following lemma is easy to prove:

Lemma 3.3.4. (a) To every well-computable function f(n), there is a fully
time-constructible function g(n) such that f(n) ≤ g(n) ≤ constant · f(n).

(b) For every fully time-constructible function g(n) there is a well-comput-
able function f(n) with g(n) ≤ f(n) ≤ constant · g(n).

(c) For every recursive function f there is a fully time-constructible func-
tion g with f ≤ g.

This lemma allows us to use, in most cases, fully time-constructible and
well-computable functions interchangeably. Following the custom, we will
use the former.

Theorem 3.3.5 (Time Hierarchy Theorem). If f(n) is fully time-construct-
ible and g(n) log g(n) = o(f(n)) then there is a language in DTIME(f(n))
that does not belong to DTIME(g(n)).

This says that the time complexities of recursive languages are “sufficiently
dense”. Analogous, but easier, results hold for storage complexities.

Exercise 3.3.3. Prove the above theorem, and the following, closely re-
lated statement: Let t′(n) log t′(n) = o(t(n)). Then the t(n)-bounded halting
problem cannot be decided on a two-tape Turing machine in time t′(n).

Exercise 3.3.4. Show that if S(n) is any function and S′(n) = o(S(n)) then
the S(n) space-bounded halting problem cannot be solved using S′(n) space.

The full time-constructibility of the function f plays very important role
in the last theorem. If we drop it then there can be an arbitrarily large “gap”
below f(n) which contains the time-complexity of no language at all.

Theorem 3.3.6 (Gap Theorem). For every recursive function ϕ(n) ≥ n
there is a recursive function f(n) such that

DTIME(ϕ(f(n))) = DTIME(f(n)).

82 3. Computation with resource bounds

Thus, there is a recursive function f with

DTIME(f(n)2) = DTIME(f(n)),

moreover, there is even one with

DTIME(22
f(n)

) = DTIME(f(n)).

Proof. Let us fix a 2-tape universal Turing machine. Denote τ(x, y) the time
needed for T to compute from input x on the first tape and y on the second
tape. (This can also be infinite.)

Claim 3.3.7. There is a recursive function h such that for all n > 0 and all
x, y ∈ Σ∗

0, if |x|, |y| ≤ n then either τ(x, y) ≤ h(n) or τ(x, y) ≥ (ϕ(h(n)))3.

If the function

ψ(n) = max{ τ(x, y) : |x|, |y| ≤ n, τ(x, y) is finite }

was recursive this would satisfy the conditions trivially. This function is,
however, not recursive (exercise: prove it!). We introduce therefore the fol-
lowing “constructive version”: for a given n, let us start from the time bound
t = n+1. Let us arrange all pairs (x, y) ∈ (Σ∗

0)
2, |x|, |y| ≤ n in a queue. Take

the first element (x, y) of the queue and run the machine with this input. If it
stops within time t then throw out the pair (x, y). If it stops in s steps where
t < s ≤ ϕ(t)3 then let t := s and throw out the pair (x, y) again. (Here, we
used that ϕ(n) is recursive.) If the machine does not stop even after ϕ(t)3

steps then stop it and place the pair (x, y) to the end of the queue. If we
have passed the queue without throwing out any pair then let us stop, with
h(n) := t. This function clearly has the property formulated in the Claim.

We will show that with the function h(n) defined above,

DTIME(h(n)) = DTIME(ϕ(h(n))).

For this, consider an arbitrary language L ∈ DTIME(ϕ(h(n))) (containment
in the other direction is trivial). To this, a Turing machine can thus be given
that decides L in time ϕ(h(n)). Therefore, a one-tape Turing machine can
be given that decides L in time ϕ(h(n))2. This latter Turing machine can
be simulated on the given universal Turing machine T with some program
p on its second tape, in time |p| · ϕ(h(n))2. Thus, if n is large enough then
T works on all inputs (y, p) (|y| ≤ n) for at most ϕ(h(n))3 steps. But then,
due to the definition of h(n), it works on each such input at most h(n)
steps. Thus, this machine decides, with the given program (which we can
also put into the control unit, if we want) the language L in time h(n), i.e.,
L ∈ DTIME(h(n)).

3.3. General theorems on space and time complexity 83

As a consequence of the theorem, we see that there is a recursive function
f(n) with

DTIME((m+ 1)f(n)) = DTIME(f(n)),

and thus
DTIME(f(n)) = DSPACE(f(n)).

For a given problem, there is often no “best” algorithm: the following
surprising theorem is true.

Theorem 3.3.8 (Speed-up Theorem). For every recursive function g(n)
there is a recursive language L such that for every Turing machine T deciding
L there is a Turing machine S deciding L with g(timeS(n)) < timeT (n).

The Linear Speedup Theorem applies to every language; this theorem
states only the existence of an arbitrarily “speedable” language. In general,
for an arbitrary language, better than linear speed-up cannot be expected.

Proof. The essence of the proof is that as we allow more complicated machines
we can “hard-wire” more information into the control unit. Thus, the machine
needs to work only with longer inputs “on their own merit”, and we want to
construct the language in such a way that this should be easier and easier.
It will not be enough, however, to hard-wire only the membership or non-
membership of “short” words in L, we will need more information about
them.

Without loss of generality, we can assume that g(n) > n and that g is
a fully time-constructable function. Let us define a function h with the
recursion

h(0) = 1, h(n) = (g(h(n− 1)))3.

It is easy to see that h(n) is a monotonically increasing (in fact, very fast
increasing), fully time-constructable function. Fix a universal Turing machine
T0 with, say, two tapes. Let τ(x, y) denote the time spent by T0 working on
input (x, y) (this can also be infinite). Let us call the pair (x, y) “fast” if
|y| ≤ |x| and τ(x, y) ≤ h(|x| − |y|).

Let (x1, x2, . . .) be an ordering of the words e.g., in increasing order; we will
select a word yi for certain indices i as follows. For each index i = 1, 2, . . . in
turn, we check whether there is a word y not selected yet that makes (xi, y)
fast; if there are such words let yi be a shortest one among these. Let L
consist of all words xi for which yi exists and the Turing machine T0 halts
on input (xi, yi) with the word “0” on its first tape. (These are the words not
accepted by T0 with program yi.)

First we convince ourselves that L is recursive, moreover, for all natural
numbers k the question x ∈ L is decidable in h(n−k) steps (where n = |x|) if
n is large enough. We can decide the membership of xi if we decide whether

84 3. Computation with resource bounds

yi exists, find yi (if it exists), and run the Turing machine T0 on input (xi, yi)
for h(|xi| − |yi|) time.

This last step itself is already too much if |yi| ≤ k; therefore we make a
list of all pairs (xi, yi) with |yi| ≤ k (this is a finite list), and put this into
the control unit. This begins therefore by checking whether the given word
x is in this list as the first element of a pair, and if it is, it accepts x (beyond
the reading of x, this is only one step!).

Suppose that xi is not in the list. Then yi, if it exists, is longer than k.
We can try all inputs (x, y) with k < |y| ≤ |x| for “fastness” and this needs
only |Σ|2n+1 · h(n − k − 1) (including the computation of h(|x| − |y|)). The
function h(n) grows so fast that this is less than h(n − k). Now we have yi
and also see whether T0 accepts the pair (xi, yi).

Second, we show that if a program y decides the language L on the machine
T0 (i.e., stops for all Σ∗

0 writing 1 or 0 on its first tape according to whether
x is in the language L) then y cannot be equal to any of the selected words
yi. This follows by the usual “diagonal” reasoning: if yi = y then let us see
whether xi is in the language L. If yes then T0 must give result “1” for the
pair (xi, yi) (since y = yi decides L). But then according to the definition of
L, we did not put xi into it. Conversely, if xi 6∈ L then it was left out since
T0 answers “1” on input (xi, yi); but then xi ∈ L since the program y = yi
decides L. We get a contradiction in both cases.

Third, we convince ourselves that if program y decides L on the machine
T0 then (x, y) can be “fast” only for finitely many words x. Let namely (x, y)
be “fast”, where x = xi. Since y was available at the selection of yi (it was
not selected earlier) therefore we would have had to choose some yi for this
i and the actually selected yi could not be longer than y. Thus, if x differs
from all words xj with |yj | ≤ |y| then (x, y) is not “fast”.

Finally, consider an arbitrary Turing machine T deciding L. To this,
we can make a one-tape Turing machine T1 which also decides L and has
timeT1(n) ≤ (timeT (n))

2. Since the machine T0 is universal, T0 simulates
T1 by some program y in such a way that (let us be generous) τ(x, y) ≤
(timeT (|x|))3 for all sufficiently long words x. According to what was proved
above, however, we have τ(x, y) ≥ h(|x|− |y|) for all but finitely many x, and
thus timeT (n) ≥ (h(n− |y|))1/3.

Thus, for the above constructed Turing machine S deciding L in h(n −
|y| − 1) steps, we have

timeT (n) ≥ (h(n− |y|))1/3 ≥ g(h(n− |y| − 1)) ≥ g(timeS(n)).

The most important conclusion to be drawn from the speed-up theorem is
that even though it is convenient to talk about the computational complexity
of a certain language L, rigorous statements concerning complexity generally
do not refer to a single function t(n) as the complexity, but only give upper

3.3. General theorems on space and time complexity 85

bounds t′(n) (by constructing a Turing machine deciding the language in time
t′(n)) or lower bounds t′′(n) (showing that no Turing machine can make the
decision in time t′′(n) for all n).

Space versus time

Above, some general theorems were stated with respect to complexity mea-
sures. It was shown that there are languages requiring a large amount of time
to decide them. Analogous theorems can be proved for the storage complex-
ity. It is natural to ask about the relation of these two complexity measures.
There are some very simple relations mentioned in the text before Theorem
3.3.2.

There is a variety of natural and interesting questions about the trade-
off between storage and time. Let us first mention the well-know practical
problem that the work of most computers can be sped up significantly by
adding memory. The relation here is not really between the storage and
time complexity of computations, only between slower and faster memory.
Possibly, between random-access memory versus the memory on disks, which
is closer to the serial-access model of Turing machines.

There are some examples of real storage-time trade-off in practice. Sup-
pose that during a computation, the values of a small but complex Boolean
function will be used repeatedly. Then, on a random-access machine, it is
worth computing these values once for all inputs and use table look-up later.
Similarly, if a certain field of our records in a data base is often used for
lookup then it is worth computing a table facilitating this kind of search.
All these examples fall into the following category. We know some problem
P and an algorithm A that solves it. Another algorithm A′ is also known
that solves P in less time and more storage than A. But generally, we don’t
have any proof that with the smaller amount of time really more storage is
needed to solve P . Moreover, when a lower bound is known on the time com-
plexity of some function, we have generally no better estimate of the storage
complexity than the trivial one mentioned above (and vice versa).

Chapter 4

Non-deterministic

algorithms

When an algorithm solves a problem then, implicitly, it also provides a proof
that its answer is correct. This proof is, however, sometimes much simpler
(shorter, easier to inspect and check) then following the whole algorithm.
For example, checking whether a natural number a is a divisor of a natural
number b is easier than finding a divisor of a. Here is another example.
König’s theorem says that in a bipartite graph, if the size of the maximum
matching is k then there are k points such that every edge is incident to one
of them (a minimum-size representing set). There are several methods for
finding a maximum matching, e.g., the so-called Hungarian method, which,
though polynomial, takes some time. This method also gives a representing
set of the same size as the matching. The matching and the representing set
together supply a proof already by themselves that the matching is maximal.

We can also reverse our point of view and can investigate the proofs with-
out worrying about how they can be found. This point of view is profitable
in several directions. First, if we know the kind of proof that the algorithm
must provide this may help in constructing the algorithm. Second, if we know
about a problem that even the proof of the correctness of the answer cannot
be given, say, within a certain time (or storage) then we also obtained lower
bound on the complexity of the algorithms solving the problem. Third (but
not last), classifying the problems by the difficulty of the correctness proof of
the answer, we get some very interesting and fundamental complexity classes.

These ideas, called non-determinism will be treated in the following sec-
tions.

87

88 4. Non-deterministic algorithms

4.1 Non-deterministic Turing machines

A non-deterministic Turing machine differs from a deterministic one only in
that in every position, the state of the control unit and the symbols scanned
by the heads permit more than one possible action. To each state g ∈ Γ
and symbols h1, . . . , hk a set of “legal actions” is given where a legal action
is a (2k + 1)-tuple consisting of a new state g′ ∈ Γ, new symbols h′1, . . . , h

′
k

and moves j1, . . . , jk ∈ {−1, 0, 1}. More exactly, a non-deterministic Turing
machine is an ordered 4-tuple T = (k,Σ,Γ,Φ) where k ≥ 1 is a natural
number, Σ and Γ are finite sets, ∗ ∈ Σ, START, STOP ∈ Γ (so far, everything
is as with a deterministic Turing machine) and

Φ ⊆ (Γ× Σk)× (Γ× Σk × {−1, 0, 1}k)

is an arbitrary relation. A legal computation of the machine is a sequence
of steps where in each step (just as with the deterministic Turing machine)
the control unit enters a new state, the heads write new letters on the tapes
and move at most one step left or right. The steps must satisfy the following
conditions: if the state of the control unit was g ∈ Γ before the step and the
heads read on the tapes the symbols h1, . . . , hk ∈ Σ then for the new state
g′, the newly written symbols h′1, . . . , h

′
k and the steps ε1, . . . , εk ∈ {−1, 0, 1}

we have
(g, h1, . . . , hk, g

′, h′1, . . . , h
′
k, ε1, . . . , εk) ∈ Φ.

A non-deterministic Turing machine can have therefore several legal compu-
tations for the same input.

We say that the non-deterministic Turing machine T accepts word x ∈ Σ∗
0

in time t if whenever we write x on the first tape and the empty word on the
other tapes, the machine has a legal computation on input x consisting of t
steps, which at its halting has in position 0 of the first tape the symbol “1”.
(There may be other legal computations that last much longer or maybe do
not even stop, or reject the word.)

We say that a non-deterministic Turing machine T recognizes a language
L if L consists exactly of those words accepted by T (in arbitrarily long finite
time). If, in addition to this, the machine accepts all words x ∈ L in time
f(|x|) (where f : Z+ → Z+), then we say that the machine recognizes L in
time f(n) (recognizability in storage f(n) is defined similarly). The class of
languages recognizable by a non-deterministic Turing machine in time f(n)
is denoted by NTIME(f(n)).

Unlike deterministic classes, the non-deterministic recognizability of a lan-
guage L does not mean that the complementary language Σ∗

0 \ L is recog-
nizable (we will see below that each recursively enumerable but not recur-
sive language is an example for this). Therefore, we introduce the classes

4.1. Non-deterministic Turing machines 89

co−NTIME(f(n)): a language L belongs to a class co−NTIME(f(n)) if and
only if the complementary language Σ∗

0 \ L belongs to NTIME(f(n)).
The notion of acceptance in storage s, and the classes NSPACE(f(n)) and

co−NSPACE(f(n)) are defined analogously.

Remarks. 1. The deterministic Turing machines can be considered, of
course, as special non-deterministic Turing machines.
2. We do not wish to model any real computation device by non-deterministic
Turing machines; we will see that they are used to pose and not to solve
problems.
3. A non-deterministic Turing machine can make several kinds of step in
a situation; we did not assume any probability distribution on these, we
cannot therefore speak about the probability of some computation. If we did
this then we would speak of randomized, or probabilistic, Turing machines,
which are the subjects of Chapter 5. In contrast to non-deterministic Turing
machines, randomized Turing machines model computing processes that are
practically important.
4. We have mentioned that if a non-deterministic Turing machine accepts a
given input in t steps, it still might have longer, even non-halting computa-
tions for the same input. If t is a well-computable function of the input, then
we can “build in a clock” to the machine which forces the computation to half
after t steps. Therefore, for such functions we could modify the definition of
acceptance such that all legal computations must stop after t steps and from
these at least one has to accept.

Theorem 4.1.1. Languages recognizable by non-deterministic Turing ma-
chines are exactly the recursively enumerable languages.

Proof. Assume first that language L is recursively enumerable. Then, there
is a Turing machine T that halts in finitely many steps on input x if and only
if x ∈ L. Let us modify T in such a way that when before stops it writes the
symbol 1 onto field 0 of the first tape. Obviously, this modified T has a legal
computation accepting x if and only if x ∈ L.

Conversely, assume that L is recognizable by a non-deterministic Turing
machine T ; we show that L is recursively enumerable. We can assume that
L is nonempty and let a ∈ L. Let the set L# consist of all finite legal com-
putations of the Turing machine T . Each element of L# is, in an appropriate
encoding, the input and then a sequence of non-deterministic moves. Every
member of this sequence describes the new state, the symbols written and
which ways the heads move. The set L# is obviously recursive. Let S be a
Turing machine that for an input y decides whether it is in L# and if yes
then whether it describes a legal computation accepting some word x. If yes,
it outputs x, if not it outputs a. The range of values of the recursive function
defined by S is obviously just L.

90 4. Non-deterministic algorithms

4.2 Witnesses and the complexity of

non-deterministic algorithms

Let us fix a finite alphabet Σ0 and consider a language L over it. Let us
investigate first, what it really means if L is recognizable within some time
by a non-deterministic Turing machine. We will show that this is connected
with how easy it is to “prove” for a word that it is in L.

We say that the language L0 ∈ DTIME(g(n)) is a witness (or certificate)
for language L if we have x ∈ L if and only if there is a word y ∈ Σ∗

0 and
x&y ∈ L0. (Here, & is a new symbol serving the separation of the words x
and y.)

Moreover, if f and g are two functions with g(n) ≥ n, then say that the
language L0 ∈ DTIME(g(n)) is a witness of length f(n) and time g(n) for
language L if it is a witness and we have x ∈ L if and only if there is a word
y ∈ Σ∗

0 with |y| ≤ f(|x|) and x&y ∈ L0. (Here, & is a new symbol serving
the separation of the words x and y.)

Theorem 4.2.1. Let g(n) ≥ n.

a) Every language L ∈ NTIME(f(n)) has a witness of length O(f(n)) and
time O(n).

b) If language L has a witness of length f(n) and time g(n) then L is in
NTIME(g(f(n) + n+ 1)).

Proof. a) Let T be the non-deterministic Turing machine recognizing the
language L in time f(n) with, say, two tapes. Following the pattern of the
proof of Theorem 4.1.1, let us assign to each word x in L the description
of a legal computation of T accepting x in time f(|x|). It is not difficult to
make a Turing machine deciding about a string of length N in O(N) steps
whether it is the description of a legal computation and if yes then whether
this computation accepts the word x. Thus, the witness is composed of the
pairs x&y where y is a legal computation accepting x.

b) Let L0 be a witness of L with length f(n) and time g(n), and consider
a deterministic Turing machine S deciding L0 in time g(n). Let us construct
a non-deterministic Turing machine T doing the following. If x is written
on its first tape then it first writes the symbol & at the end of x and then
writes a word y after word x& by picking each letter and the end of y non-
deterministically. After this it makes a transition into state START2.

From state START2, on the first tape, the machine moves the head on the
starting cell, and then proceeds to work as the Turing machine S.

This machine T has an accepting legal computation if and only if there
is a word y ∈ Σ∗

0 for which S accepts word x&y, i.e., if x ∈ L and in
this case such a y exists of length at most f(|x|). The running time of this

4.2. Witnesses and the complexity 91

computation for such a y is obviously at most O(f(|x|))+g(|x|+1+f(|x|)) =
O(g(|x| + 1 + f(x))).

Corollary 4.2.2. For an arbitrary language L ⊆ Σ∗
0, the following properties

are equivalent:

• L is recognizable on a non-deterministic Turing machine in polynomial
time.

• L has a witness of polynomial length and time.

Remark. We mention it without proof (even without exact formulation)
that these properties are also equivalent to the following: one can give a
definition of L in the formal axiom system of set theory such that, for a word
x ∈ L, the statement “x ∈ L” can be proved from the axioms of set theory
in a number of steps polynomial in |x|.

We denote the class of languages having the property stated in Corollary
4.2.2 by NP. The languages L whose complement Σ∗

0 \ L is in NP form
the class co−NP. As we mentioned earlier, with these classes of languages,
what is easy is not the solution of the recognition problem of the language,
only the verification of the witnesses for the solution. We will see later that
these classes are fundamental: they contain a large part of the algorithmic
problems important from the point of view of practice.

Figure 4.2.1 illustrates the relationship between the classes P, NP and co-
NP. There are, however, significant differences. First, we don’t know whether
or not P fills the whole intersection NP ∩ co−NP. Second, we don’t know
whether the difference NP \ co−NP is empty or nonempty (i.e., it could be
that NP = co−NP). We will discuss this issue later.

Many important languages are given by their witnesses – more precisely,
by the language L0 and function f(n) in our definition of witnesses (we will
see many examples for this later). In such cases we are asking whether a given
word x is in L (i.e., whether there is a y with |y| ≤ f(n) and x&y ∈ L0).
Without danger of confusion, the word y itself will also be called the witness
word, or simply witness, belonging to x in the witness language L0. Very
often, we are not only interested whether a witness word exists but would also
like to produce one. This problem can be called the search problem belonging
to the language L. There can be, of course, several search problems belonging
to a language. A search problem can make sense even if the corresponding
decision problem is trivial. For example, every natural number has a prime
decomposition but this is not easy to find.

Since every deterministic Turing machine can be considered non-determin-
istic it is obvious that

DTIME(f(n)) ⊆ NTIME(f(n)).

92 4. Non-deterministic algorithms

P

NP co-NP

Figure 4.2.1: The classes of NP and co-NP

In analogy with the fact that there is a recursively enumerable but not recur-
sive language (i.e., without limits on time or storage, the non-deterministic
Turing machines are “stronger”), we would expect that the above inclusion
is strict. This is proved, however, only in very special cases (e.g., in case of
linear functions f , by Paul, Pippenger, Trotter and Szemeredi). Later, we
will treat the most important special case, the relation of the classes P and
NP in detail.

The following simple relations connect the non-deterministic time- and
space complexity classes:

Theorem 4.2.3. Let f be a well-computable function. Then

NTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ NSPACE(f(n)) ⊆
⋃

c>0

DTIME(2cf(n)).

Proof. NTIME(f(n)) ⊆ DSPACE(f(n)): The essence of the construction is
that all legal computations of a non-deterministic Turing machine can be
tried out one after the other using only as much space as needed for one such
legal computation; above this, we need some extra space to keep track of
which computation we are trying out at the moment.

More exactly, this can be described as follows. Let T be a non-deterministic
Turing machine recognizing language L in time f(n). As mentioned in the
first remark of this chapter, we can assume that all legal computations of T
take at most f(n) steps where n is the length of the input. Let us modify
the work of T in such a way that (for some input x) it will always choose

4.2. Witnesses and the complexity 93

first the lexicographically first action (we fix some ordering of Σ and Γ, this
makes the actions lexicographically ordered). We give the new (determin-
istic) machine called S an extra “bookkeeping” tape on which it writes up
which legal action it has chosen. If the present legal computation of T does
not end with the acceptance of x then machine S must not stop but must
look up, on its bookkeeping tape, the last action (say, this is the j-th one)
which it can change to a lexicographically larger legal one. Let it perform a
legal computation of T in such a way that up to the j-th step it performs
the steps recorded on the bookkeeping tape, in the j-th step it performs the
lexicographically next legal action, and after it, the lexicographically first one
(and, of course, it rewrites the bookkeeping tape accordingly).

The modified, deterministic Turing machine S tries out all legal computa-
tions of the original machine T and uses only as much storage as the original
machine (which is at most f(n)), plus the space used on the bookkeeping
tape (which is again only O(f(n))).

NSPACE(f(n)) ⊆ ⋃

c>0DTIME(2cf(n)): Let T = 〈k,Σ,Γ,Φ〉 be a non-
deterministic Turing machine recognizing L with storage f(n). We can as-
sume that T has only one tape. We want to try out all legal computations
of T . Some care is needed since a legal computation of T can last as long as
2f(n) steps, so there can even be 22

f(n)

legal computations; we do not have
time for checking this many computations.

To better organize the checking, we illustrate the situation by a graph
as follows. Let us fix the length n of the input. By configuration of the
machine, we understand a triple (g, p, h) where g ∈ Γ, −f(n) ≤ p ≤ f(n)
and h ∈ Σ2f(n)+1. The state g is the state of the control unit at the given
moment, the number p says where is the head and h specifies the symbols
on the tape (since we are interested in computations whose storage need is
at most f(n) it is sufficient to consider 2f(n) + 1 cells). It can be seen that
the number of configurations is at most |Γ|(2f(n) + 1)m2f(n)+1 = 2O(f(n)).
Therefore, every configuration can be coded by a word of length O(f(n)) over
Σ.

Prepare a directed graph G whose vertices are the configurations; we draw
an edge from vertex u to vertex v if the machine has a legal action leading
from configuration u to configuration v. Add a vertex v0 and draw an edge to
v0 from every configuration in which the machine is in state STOP and has
1 on cell 0 of its tape. Denote ux the starting configuration corresponding to
input x. Word x is in L if and only if in this directed graph, a directed path
leads from ux to v0.

On the RAM, we can construct the graph G in time 2O(f(n)) and (e.g., us-
ing breadth-first search) we can decide in time O(|V (G)|) = 2O(f(n)) whether
it contains a directed path from ux to v0. Since the RAM can be simulated

94 4. Non-deterministic algorithms

by Turing machines in quadratic time, the time bound remains 2O(f(n)) also
on the Turing machine.

The following interesting theorem shows that the storage requirement is
not essentially decreased if we allow non-deterministic Turing machines.

Theorem 4.2.4 (Savitch’s Theorem). If f(n) is a well-computable function
and f(n) ≥ logn then

NSPACE(f(n)) ⊆ DSPACE(f(n)2).

Proof. Let T = 〈1,Σ,Γ,Φ〉 be a non-deterministic Turing machine recogniz-
ing L with storage f(n). Let us fix the length n of inputs. Consider the
graph G defined in the previous proof; we want to decide whether it contains
a directed path leading from ux to v0. Now, of course, we do not want to
construct this whole graph since it is very big. We will therefore view it as
given by a certain “oracle”. Here, this means that about any two vertices,
we can decide in a single step whether they are connected by an edge. More
exactly, this can be formulated as follows. Let us extend the definition of
Turing machines. A Turing machine with oracle for G is a special kind of
machine with three extra tapes reserved for the “oracle”. The machine has a
special state ORACLE. When it is in this state then in a single step, it writes
onto the third oracle-tape a 1 or 0 depending on whether the words written
onto the first and second oracle tapes are names of graph vertices (configu-
rations) connected by an edge, and enters the state START. In every other
state, it behaves like an ordinary Turing machine. When the machine enters
the state ORACLE we say it asks a question from the oracle. The question
is, of course, given by the pair of strings written onto the first two oracle
tapes, and the answer comes on the third one.

Lemma 4.2.5. Suppose that a directed graph G is given with an oracle on
the set of words of length t. Then there is a Turing machine with an oracle
for G which for given vertices u, v and natural number q decides, using O(qt+
q log q) storage, whether there is a path of length at most 2q from u to v.

Proof. The Turing machine to be constructed will have two tapes besides
the three oracle-tapes. At start, the first tape contains the pair (u, q), the
second one the pair (v, q). The work of the machine proceeds in stages. At
the beginning of some intermediate stage, both tapes will contain a few pairs
(x, r) where x is the name of a vertex and r ≤ q is a natural number.

Let (x, r) and (y, s) be the last pair on the two tapes. In the present stage,
the machine asks the question whether there is a path of length at most
min{2r, 2s} from x to y. If min{r, s} = 0 then the answer can be read off
immediately from an oracle-tape. If min{r, s} ≥ 1 then let m = min{r, s}−1.

4.3. Examples of languages in NP 95

We write the pair (w,m) to the end of the first tape and determine recursively
whether there is a path of length at most 2m from w to y, where w is the
lexicographically first vertex initially. If there is one then we write (w,m)
to the end of the second tape, erase it from the end of the first tape and
determine whether there is a path of length at most 2m from x to w. If there
is one then we erase (w,m) from the end of the second tape: we know that
there is a path of length at most min{2r, 2s} from x to y. If there is no path
of length at most 2m either between x and w or between w and y then we
try the lexicographically next w. If we have tried all w’s then we know that
there is no path of length min{2r, 2s} between x and y.

It is easy to see that the second elements of the pairs are decreasing from
left to right on both tapes, so at most q pairs will ever get on each tape. One
pair requiresO(t+log q) symbols. The storage thus used is only O(q log q+qt).
This finishes the proof of the lemma.

Returning to the proof of the theorem, note that the question whether
there is an edge between two vertices of the graph G can be decided easily
without the help of additional storage; we might as well consider this decision
as an oracle. The Lemma is therefore applicable with values t, q = O(f(n)),
and we obtain that it can be decided with at most tq + q log q = O(f(n)2)
storage whether from a given vertex ux there is a directed path into v0, i.e.,
whether the word x is in L.

As we noted, the class PSPACE of languages decidable on a deterministic
Turing machine in polynomial storage is very important. It seems natural to
introduce the class NPSPACE which is the class of languages recognizable
on a non-deterministic Turing machine with polynomial storage. But the
following corollary of Savitch’s theorem shows that this would not lead to
any new notion:

Corollary 4.2.6. PSPACE = NPSPACE.

4.3 Examples of languages in NP

In this section, by a graph we mean a simple graph: an undirected graph
without multiple edges or loops. n is always the number of nodes. Unless we
say otherwise, we assume that the graph is described by its adjacency matrix,
which we consider as a string in {0, 1}n2

. In this way, a graph property can be
considered a language over {0, 1}. We can thus ask whether a certain graph
property is in NP. (Notice that describing a graph in one of the other usual
ways, e.g., by giving a list of neighbors for each node, would not affect the
membership of graph properties in NP. It is namely easy to compute these

96 4. Non-deterministic algorithms

representations from each other in polynomial time.) The following graph
properties are in NP.

a) Graph-connectivity. Witness: a set of
(

n
2

)

paths, one for each pair of
nodes.

b) Graph non-connectivity. Witness: a proper subset of the set of nodes
that is not connected by any edge to the rest of the nodes.

c) Planarity. The natural witness is a concrete diagram, though some
analysis is needed to see that in case such a diagram exists then one exists
in which the coordinates of every node are integers whose number of bits is
polynomial in n.

It is interesting to remark the fact known in graph theory that this latter
diagram can be realized using single straight-line segments for the edges and
thus, it is enough to specify the coordinates of the nodes. We must be careful,
however, since the coordinates of the nodes used in the drawing may have
too many bits, violating the requirement on the length of the witness. (It can
be proved that every planar graph can be drawn in the plane in such a way
that each edge is a straigh-line segment and the coordinates of every node
are integers whose number of bits is polynomial in n.)

It is possible, however, to give a purely combinatorial way of drawing the
graph. Let G be a graph with n nodes and m edges which we assume for
simplicity to be connected. After drawing it in the plane, the edges partition
the plane into domains which we call “countries” (the unbounded domain is
also a country). We need the following fact, called Euler’s formula:

Theorem 4.3.1. A connected planar graph with n nodes and m edges has
n+m− 2 countries.

Thus to specify the drawing we give a set of m − n + 2 country names
and for every country, we specify the sequence of edges forming its boundary
(note that an edge can occur twice in a sequence). In this case, it is enough
to check whether every edge appears in exactly two boundaries.

The fact that the existence of such a set of edge sequences is a necessary
condition of planarity follows from Euler’s formula. The sufficiency of this
condition requires somewhat harder tools from topology; we will not go into
these details. (Specifying a set of edge sequences as country boundaries
amounts to defining a two-dimensional surface with the graph drawn onto
it. A theorem of topology says that if a connected graph drawn on that
surface satisfies Euler’s formula then the surface is topologically equivalent
(homeomorphic) to the plane.)

d) Non-planarity. Let us review the following facts.

1. Let K5 be the complete graph on five vertices, i.e., the graph obtained
by connecting five nodes in every possible way. LetK3,3 be the complete

4.3. Examples of languages in NP 97

balanced bipartite graph on six vertices, i.e., the 6-node bipartite graph
containing two sets A,B of three nodes each, with every possible edge
between A and B. This graph is also called “three houses, three wells”
after a certain puzzle with a similar name. It is easy to see that K5

and K3,3 are nonplanar.

2. Given a graph G, we say that a graph G′ is a subdivision of G if it
is obtained from G by replacing each edge of G with arbitrarily long
non-intersecting paths. It is easy to see that if G is nonplanar then any
subdivision is nonplanar.

3. If a graph is nonplanar then, obviously, every graph containing it is also
nonplanar.

The following fundamental theorem of graph theory says that the nonpla-
nar graphs are just the ones obtained by the above operations:

Theorem 4.3.2 (Kuratowski’s Theorem). A graph is nonplanar if and only
if it contains a subgraph that is a subdivision of either K5 or K3,3.

If the graph is nonplanar then the subgraph whose existence is stated by
Kuratowski’s Theorem can serve as a certificate for this.

e) Existence of perfect matching. Witness: the perfect matching itself.

f) Non-existence of a perfect matching. Witnesses for the non-existence
in case of bipartite graphs are based on a fundamental theorem. Let G be a
bipartite graph consisting of bipartition classes A and B. Recall the following
theorem.

Theorem 4.3.3 (Frobenius’s Theorem). A bipartite graph G has a perfect
matching if and only if |A| = |B| and for any k, any k nodes in B have at
least k neighbors in A.

Hence, if in some bipartite graph there is no perfect matching then this
can be certified either by noting that A and B have different cardinality, or
by a subset of A violating the conditions of the theorem.

Now let G be an arbitrary graph. If there is a perfect matching then it is
easy to see that for any k, if we delete any k nodes, there remain at most k
connected components of odd size. The following fundamental (and deeper)
theorem says that this condition is not only necessary for the existence of a
perfect matching but also sufficient.

Theorem 4.3.4 (Tutte’s Theorem). A graph G has a perfect matching if and
only if for any k, if we delete any k nodes, there remain at most k connected
components of odd size.

98 4. Non-deterministic algorithms

This way, if there is no perfect matching in the graph then this can be
certified by a set of nodes whose deletion creates too many odd components.

A Hamiltonian cycle of a graph is a cycle going through each node exactly
once.

g) Existence of a Hamiltonian cycle. Witness: the Hamitonian cycle
itself.

A coloring of a graph is an assignment of some symbol called “color” to
each node in such a way that neighboring nodes get different colors.

h) Colorability with three colors If a graph can be colored with three
colors the coloring itself is a certificate. Of course, this is valid for any number
of colors.

The properties listed above from a) to f) can be solved in polynomial
time (i.e., they are in P). For the Hamiltonian cycle problem and the three-
colorability problem, no polynomial algorithm is known (we return to this
later).

To show that many fundamental problems in arithmetic and algebra also
belong to the class NP, we recall that every natural number can be considered
as a word in {0, 1}∗ (representing the number in binary). We start with the
problem of deciding whether a natural number is a prime.

i) Compositeness of an integer. Witness: a proper divisor.

j) Primality. It is significantly more difficult to find witnesses for primality.
We use the following fundamental theorem of number theory:

Theorem 4.3.5. An integer n ≥ 2 is prime if and only if there is a natural
number a such that an−1 ≡ 1 (mod n) but am 6≡ 1 (mod n) for any m such
that 1 ≤ m < n− 1.

(This theorem says that there is a so-called “primitive root” a for n, whose
powers run through all non-0 residues mod n.)

With this theorem in mind,we would like to use the number a to be the
witness for the primality of n. Since, obviously, only the remainder of the
number a after division by n is significant here, there will also be a witness
a with 1 ≤ a < n. In this way, the restriction on the length of the witness
is satisfied: a does not have more bits than n itself. Let k be the number of
bits of n. As we have seen in Chapter 3, we can check the condition

an−1 ≡ 1 (mod n) (4.3.1)

in polynomial time. It is, however, a much harder question how to verify the
further conditions:

am 6≡ 1 (mod n) (1 ≤ m < n− 1). (4.3.2)

4.3. Examples of languages in NP 99

We have seen that we can do this for each specific m, but it seems that
we must do this n − 2 times, i.e., exponentially many times in terms of k.
We can use, however, the (easy) number-theoretical fact that if (4.3.1) holds
then the smallest m = m0 violating (4.3.2) (if there is any) is a divisor of
n − 1. It is also easy to see that then (4.3.2) is violated by every multiple
of m0 smaller than n − 1. Thus, if the prime factor decomposition of n − 1
is n − 1 = pr11 · · · prtt then (4.3.2) is violated by some m = (n − 1)/pi. It is
enough therefore to verify that for all i with 1 ≤ i ≤ t,

a(n−1)/pi 6≡ 1 (mod n).

Now, it is obvious that t ≤ k and therefore we have to check (4.3.2) for at
most k values which can be done in the way described before, in polynomial
total time.

There is, however, another difficulty: how are we to compute the prime
decomposition of n − 1? This, in itself, is a harder problem than to decide
whether n is a prime. We can, however, add the prime decomposition of
n − 1 to the “witness”; this consists therefore, besides the number a, of the
numbers p1, r1, . . . , pt, rt (it is easy to see that this is at most 3k bits). The
only problem that remains to be checked is whether this is indeed a prime
decomposition, i.e., that n− 1 = pr11 · · · prtt (this is easy) and that p1, . . . , pt
are indeed primes. We can do this recursively.

We still have to check that this recursive method gives witnesses of polyno-
mial length and it can be decided in polynomial time that these are witnesses.
Let L(k) denote the maximum length of the witnesses in case of numbers n
of k bits. Then, according to the above recursion,

L(k) ≤ 3k +

t
∑

i=1

L(ki)

where ki is the number of bits of the prime pi. Since p1 · · · pt ≤ n− 1 < n it
follows easily that

k1 + · · ·+ kt ≤ k.

Also obviously ki ≤ k − 1. Using this, it follows from the above recursion
that L(k) ≤ 3k2. This is obvious for k = 1 and if we know that it holds for
all numbers less than k, then

L(k) ≤ 3k +

t
∑

i=1

L(ki) ≤ 3k +

t
∑

i=1

3k2i

≤ 3k + 3(k − 1)
t

∑

i=1

ki ≤ 3k + 3(k − 1) · k ≤ 3k2.

100 4. Non-deterministic algorithms

We can prove similarly that it is decidable about a string in polynomial time
whether it is a certificate defined in the above way.

Usually we are not satisfied with knowing whether a given number n is a
prime or not, but if it is not a prime then we might also want to find one of
its proper divisors. (If we can solve this problem then repeating it, we can
find the complete prime decomposition.) This is not a decision problem, but
it is not difficult to reformulate it as a decision problem:

k) Existence of a bounded divisor. Given two natural numbers n and
k; does n have a proper divisor not greater than k?

It is clear that this problem is in NP: the certificate is the divisor.
The complementary language is also in NP: This is the set of all pairs

(n, k) such that every proper divisor of n is greater than k. A certificate
for this is the prime decomposition of n, together with a certificate of the
primality of every prime factor.

It is not known whether the existence of a bounded divisor is in P, moreover
not even a randomized polynomial algorithm was yet found. However, in 2002
primality was proved to be in P by Agrawal, Kayal and Saxena.

Now we turn to some basic questions in algebra. A notion analogous for
primality of a positive integer is irreducibility of a polynomial (for simplic-
ity, with a single variable, and with rational coefficients). A polynomial is
reducible if it can be written as the product of two non-constant polynomials
with rational coefficients.

l) Reducibility of a polynomial over the rational field. Witness: a
proper divisor; but some remarks are in order.

Let f be the polynomial. To prove that this problem is in NP we must con-
vince ourselves that the number of bits necessary for writing down a proper
divisor can be bounded by a polynomial of the number of bits in the repre-
sentation of f . (We omit the proof of this here.)

It can also be shown that this language is in P.

A system Ax ≤ b of linear inequalities (where A is an integer matrix
with m rows and n columns and b is a column vector of m elements) can be
considered a word over the alphabet consisting of the symbols “0”, “1”, “,” and
“;” when e.g., we represent its elements in the binary number system, write
the matrix row after row, placing a comma after each number and a semicolon
after each row. The following properties of systems of linear inequalities are
in NP:

m) Existence of solution. The solution offers itself as an obvious witness
of solvability but we must be careful: we need that if a system of linear
equations with integer coefficients has a solution then it has a solution among
rational numbers, moreover, even a solution in which the numerators and

4.3. Examples of languages in NP 101

denominators have only a polynomial number of bits. These facts follow
from the elements of the theory of linear programming.

n) Nonexistence of solution. Witnesses for the non-existence of solution
can be found using the following fundamental theorem known from linear
programming:

Theorem 4.3.6 (Farkas’s Lemma). The system Ax ≤ b of inequalities
is unsolvable if and only if the following system of inequalities is solvable:
yTA = 0, yT b = −1, y ≥ 0.

In words, this lemma says that a system of linear inequalities is unsolvable
if and only if a contradiction can be obtained by a linear combination of the
inequalities with nonnegative coefficients.

Using this, a solution of the system of inequalities given in the lemma (the
nonnegative coefficients) is a witness of the nonexistence of a solution for the
original system.

o) Existence of an integer solution. The solution itself is a witness but
we need some reasoning again to limit the size of witnesses, which is difficult
here. The arguments needed are similar to the ones seen at the discussion of
Gaussian elimination in Section 3.1 and are based on Cramer’s rule.

It is not known whether the non-existence of an integer solution is in NP,
i.e., if this fact can be certified by a polynomial length and polynomial time
verifiable certificate.

It is important to note that the fundamental problem of linear program-
ming, i.e., looking for the optimum of a linear object function under linear
conditions, can be easily reduced to the problem of solvability of systems of
linear inequalities. Similarly, the search for optimal integer solutions can be
reduced to the decision of the existence of integer solutions.

For a long time, it was unknown whether the problem of solvability of
systems of linear inequalities is in P (the well-known simplex method is not
polynomial). The first polynomial algorithm for this problem was the ellip-
soid method of L. G. Khachian (relying on work by Yudin and Nemirovskii).

The running time of this method led, however, to a very high-degree poly-
nomial; it could not therefore compete in practice with the simplex method
which, though is exponential in the worst case, is on average (in practice)
much faster than the ellipsoid method.

Several polynomial time linear programming algorithms have been found
since; among these, Karmarkar’s method can compete with the simplex
method even in practice.

No polynomial algorithm is known for solving systems of linear inequalities
in integers; one cannot even hope to find such an algorithm (see the notion
of NP-completeness below).

102 4. Non-deterministic algorithms

Reviewing the above list of examples, the following observations can be
made.

• For many properties that are in NP, their negation (i.e., the complement
of the corresponding language) is also in NP. This fact is, however,
generally non-trivial; in various branches of mathematics, often the
most fundamental theorems assert this for certain languages.

• It is often the case that if some property (language) turns out to be in
NP ∩ co−NP then sooner or later it also turns out to be in P. This
happened, for example, with the existence of perfect matchings, pla-
narity, the solution of systems of linear inequalities. Research is very
intensive on prime testing. If NP is considered an analog of “recursively
enumerable” and P an analog of “recursive” then we can expect that
this is always the case. However, there is no proof for this; moreover,
this cannot really be expected to be true in full generality.

• In case of other NP problems, their solution in polynomial time seems
hopeless, they are very hard to handle (Hamiltonian cycle, graph color-
ing, and integer solution of a system of linear inequalities). We cannot
prove that these are not in P (we don’t know whether P = NP holds);
but still, one can prove a certain property of these problems that shows
that they are hard. We will return to this in a later section of this
chapter.

• There are many problems in NP with a naturally corresponding search
problem and with the property that if we can solve the decision problem
then we can also solve (in a natural manner) the search problem. E.g., if
we can decide in polynomial time whether there is a perfect matching in
a certain graph then we can search for a perfect matching in polynomial
time in the following way. We delete edges from the graph as long as a
perfect matching still remains in it. When we get stuck, the remaining
graph must be a perfect matching. Using similar simple tricks, the
search problem corresponding to the existence of Hamiltonian cycles,
colorability with 3 colors, etc. can be reduced to the decision problem.
This is, however, not always so. E.g., our ability to decide in polynomial
time whether a number is a prime is not applicable to the problem of
finding a proper divisor.

• A number of NP-problems have a related optimization problem which is
more natural to state, even if it is not an NP-problem by its form. For
example, instead of the general matching problem, it is more natural
to determine the maximum size of a matching in the graph. In case of
the coloring problem, we may want to look for the chromatic number,
the smallest number of colors with which the graph is colorable. The

4.4. NP-completeness 103

solvability of a set of linear inequalities is intimately connected with
the problem of finding a solution that maximizes a certain linear form:
this is the problem of linear programming. Several other examples
come later. If there is a polynomial algorithm solving the optimization
problem then it automatically solves the associated NP problem. If
there is a polynomial algorithm solving the NP-problem then, using
binary search, it provides a polynomial algorithm to solve the associated
optimization problem.

There are, of course, interesting problems (languages) also in other non-
deterministic complexity classes. The non-deterministic exponential time
(NEXPTIME) class can be defined as the union of the classes NTIME(2n

c

)
for all c > 0. We can formulate an example in connection with Ramsey’s
Theorem. Let G be a graph; the Ramsey number R(G) corresponding to G
is the smallest N > 0 such that no matter how we color the edges of the
N -node complete graph with two colors, some color contains a copy of G.
(Ramsey’s Theorem is the non-trivial fact that such a finite number exists.)
Let L consist of the pairs (G,N) for which R(G) > N . The size of the input
(G,N) (if G is described, say, by its adjacency matrix) is O(|V (G)|2+logN).

Now, L is in NEXPTIME since the fact (G,N) ∈ L is witnessed by a
coloring of the complete graph on N nodes in which no homogenously col-
ored copy of G; this property can be checked in time O(N |V (G)|) which is
exponential in the size of the input (but not worse). On the other hand,
deterministically, we know no better algorithm to decide (G,N) ∈ L than a
double exponential one. The trivial algorithm, which is, unfortunately, the
best known, goes through all 2N(N−1)/2 colorings of the edges of the N -node
complete graph.

4.4 NP-completeness

We say that a language L1 ⊆ Σ∗
1 is polynomially reducible to a language

L2 ⊆ Σ∗
2 if there is a function f : Σ∗

1 → Σ∗
2 computable in polynomial time

such that for all words x ∈ Σ∗
1 we have

x ∈ L1 ⇔ f(x) ∈ L2.

It is easy to verify from the definition that this relation is transitive:

Proposition 4.4.1. If L1 is polynomially reducible to L2 and L2 is polyno-
mially reducible to L3 then L1 is polynomially reducible to L3.

The membership of a language in P can also be expressed by saying that
it is polynomially reducible to the language {1}.

104 4. Non-deterministic algorithms

P

NP co-NP

NPC co-NPC

Figure 4.4.1: The classes of NP-complete (NPC) and co-NP-complete lan-
guages

Proposition 4.4.2. If a language is in P then every language is in P that
is polynomially reducible to it. If a language is in NP then every language is
in NP that it polynomially reducible to it.

We call a language NP-complete if it belongs to NP and every language
in NP is polynomially reducible to it. These are thus the “hardest” languages
in NP. The class of NP-complete languages is denoted by NPC. Figure 4.4.1
adds the class of NP-complete languages to figure 4.2.1. We’ll see that the
position of the dotted line is not a proved fact: for example, if P = NP, then
also NPC = P.

The word “completeness” suggests that such a problem contains all the
complexity of the whole class: the solution of the decision problem of a com-
plete language contains, in some sense, the solution to the decision problems
of all other NP languages. If we could show about even a single NP-complete
language that it is in P then P = NP would follow. The following observation
is also obvious.

Proposition 4.4.3. If an NP-complete language L1 is polynomially reducible
to a language L2 in NP then L2 is also NP-complete.

It is not obvious at all that NP-complete languages exist. Our first goal
is to give an NP-complete language; later (by polynomial reduction, using
Proposition 4.4.3) we will prove the NP-completeness of many other prob-
lems.

A Boolean polynomial is called satisfiable if the Boolean function defined
by it is not identically 0. The Satisfiability Problem is to decide for a given
Boolean polynomial f whether it is satisfiable. We consider the problem
when the Boolean polynomial is a conjunctive normal form.

4.4. NP-completeness 105

Exercise 4.4.1. When is a disjunctive normal form satisfiable?

Exercise 4.4.2. Given a graph G and three colors, 1,2 and 3. Let us intro-
duce, to each vertex v and color i a logical value x[v, i]. Give a conjunctive
normal form B for the variables x[v, i] which is satisfiable if and only if

a) G can be colored with 3 colors such that x[v, i] is true if and only if the
color of v is i;

b) the coloring is also required to be proper.

Give a conjunctive normal form which is satisfiable if and only if G is 3-
colorable.

We can consider each conjunctive normal form as a word over the alphabet
consisting of the symbols “x”, “0”, “1”, “+”, “¬” (or “x”), “∧” and “∨” (we
write the indices of the variables in binary number system, e.g., x6 = x110).
Let SAT denote the language formed from the satisfiable conjunctive normal
forms.

The following theorem is one of the central results in complexity theory.

Theorem 4.4.4 (Cook–Levin Theorem). The language SAT is NP-complete.

Proof. Let L be an arbitrary language in NP. Then there is a non-determin-
istic Turing machine T = 〈k,Σ,Γ,Φ〉 and there are integers c, c1 > 0 such
that T recognizes L in time c1 · nc. We can assume k = 1. Let us consider
an arbitrary word h1 · · ·hn ∈ Σ∗. Let N = ⌈c1 · nc⌉. Let us introduce the
following variables:

x[t, g] (0 ≤ t ≤ N, g ∈ Γ),

y[t, p] (0 ≤ t ≤ N, −N ≤ p ≤ N),

z[t, p, h] (0 ≤ t ≤ N, −N ≤ p ≤ N, h ∈ Σ).

If a legal computation of the machine T is given then let us assign to these
variables the following values: x[t, g] is true if after the t-th step, the control
unit is in state g; y[t, p] is true if after the t-th step, the head is on the p-th
tape cell; z[t, p, h] is true if after the t-th step, the p-th tape cell contains
symbol h. The variables x, y, z obviously determine the computation of the
Turing machine.

However, not every possible system of values assigned to the variables will
correspond to a computation of the Turing machine. One can easily write
up logical relations among the variables that, when taken together, express
the fact that this is a legal computation accepting h1 · · ·hn. We must require
that the control unit be in some state in each step:

∨

g∈Γ

x[t, g] (0 ≤ t ≤ N);

106 4. Non-deterministic algorithms

and it should not be in two states:

x[t, g] ∨ x[t, g′] (g, g′ ∈ Γ, 0 ≤ t ≤ N).

We can require, similarly, that the head should be only in one position in
each step and there should be one and only one symbol in each tape cell.
We write that initially the machine is in state START and at the end of the
computation, in state STOP, and the head starts from cell 0:

x[0, START] = 1, x[N, STOP] = 1, y[0, 0] = 1;

and, similarly, that the tape contains initially the input h1, . . . , hn and finally
the symbol 1 on cell 0:

z[0, i− 1, hi] = 1 (1 ≤ i ≤ n)

z[0, i− 1, ∗] = 1 (i < 0 or i > n)

z[N, 0, 1] = 1.

We must further express the computation rules of the machine, i.e., that
for all g, g′ ∈ Γ, h, h′ ∈ Σ, ε ∈ {−1, 0, 1}, −N ≤ p ≤ N and 0 ≤ t < N if
(g, h, g′, h′, ε) 6∈ Φ, then we have

x[t, g] ∨ y[t, p] ∨ z[t, p, h] ∨ x[t+ 1, g′] ∨ y[t+ 1, p+ ε] ∨ z[t+ 1, p, h′],

and to make sure that the head does not jump far, also

y[t, p] ∨ y[t+ 1, p− 1] ∨ y[t+ 1, p] ∨ y[t+ 1, p+ 1].

We also need that where there is no head the tape content does not change:

y[t, p] ∨ z[t, p, h] ∨ z[t+ 1, p, h].

Joining all these relations by the sign “∧” we get a conjunctive normal form
that is satisfiable if and only if the Turing machine T has a computation
of at most N steps accepting h1, . . . , hn. It easy to verify that for given
h1, . . . , hn, the described construction of a formula can be carried out in
polynomial time.

It will be useful to prove the NP-completeness of some special cases of
the satisfiability problem. A conjunctive normal form is called a k-form if
in each of its components, at most k literals occur. Let k-SAT denote the
language made up by the satisfiable k-forms. Let further SAT-k denote the
language consisting of those satisfiable conjunctive normal forms in which
each variable occurs in at most k elementary disjunctions.

4.4. NP-completeness 107

Theorem 4.4.5. The language 3-SAT is NP-complete.

Proof. We reduce SAT to 3− SAT by introducing new variables. Given a B
conjunctive normal form, take one of its disjunctions. This can be expressed
as E = z1 ∨ . . . ∨ zk where each zi is a literal. Let us introduce k new
variables, yE1 , . . . y

E
k and take the

yE1 ∨ z1,⇒ yE1 ∨ z1

and

yEi ∨ zi,⇒ yEi ∨ yEi−1,⇒ yEi ∨ yEi−1 ∨ zi ⇒ (i = 2, . . . k)

disjunctions (these express that yE1 = z1 and yEi = yEi−1 ∨ zi, i.e., yEi =
z1 ∨ . . . ∨ zi). These and the single component disjunctions yEk for each E
connected with ∧ symbols we get a 3-form that is satisfiable if and only if B
is satisfiable.

It is natural to wonder at this point why have we considered only the
3-satisfiability problem. The problems 4-SAT, 5-SAT, etc. are harder than
3-SAT therefore these are, of course, also NP-complete. The theorem below
shows, on the other hand, that the problem 2-SAT is already not NP-complete
(at least if P 6= NP). This illustrates the fact that often a little modification
of the conditions of a problem leads from a polynomially solvable problem to
an NP-complete one.

Theorem 4.4.6. The language 2-SAT is in P.

Proof. Let B be a 2-form on the variables x1, . . . , xn. Let us use the conven-
tion that the variables xi are also written as x1i and the negated variables
xi are also written as new symbols x0i . Let us construct a directed graph G
on the set V (G) = {x1, . . . , xn, x1, . . . , xn} in the following way: we connect
node xεi to node xδj if x1−ε

i ∨ xδj is an elementary disjunction in B. (This
disjunction is equivalent to xεi ⇒ xδj .) Let us notice that then in this graph,
there is also an edge from x1−δ

j to x1−ε
i . In this directed graph, let us con-

sider the strongly connected components; these are the classes of nodes
obtained when we group two nodes in one class whenever there is a directed
path between them in both directions.

Lemma 4.4.7. The formula B is satisfiable if and only if none of the strongly
connected components of G contains both a variable and its negation.

The theorem follows from this lemma since it is easy to find in polynomial
time the strongly connected components of a directed graph.

108 4. Non-deterministic algorithms

Proof of Lemma 4.4.7. Let us note first that if an assignment of values sat-
isfies formula B and xεi is “true” in this assignment then every xδj is “true” to
which an edge leads from xεi : otherwise, the elementary disjunction x1−ε

i ∨xδj
would not be satisfied. It follows from this that the nodes of a strongly con-
nected component are either all “true” or none of them. But then, a variable
and its negation cannot simultaneously be present in a component.

Conversely, let us assume that no strongly connected component contains
both a variable and its negation. Consider a variable xi. According to the
condition, there cannot be directed paths in both directions between x0i and
x1i . Let us assume there is no such directed path in either direction. Let us
then draw a new edge from x1i to x0i . This will not violate our assumption that
no connected component contains both a node and its negation. If namely
such a connected components should arise then it would contain the new
edge, but then both x1i and x0i would belong to this component and therefore
there would be a path from x0i to x1i . But then this path would also be in
the original graph, which is impossible.

Repeating this procedure, we can draw in new edges (moreover, always
from a variable to its negation) in such a way that in the obtained graph,
between each variable and its negation, there will be a directed path in exactly
one direction. Let now be xi = 1 if a directed path leads from x0i to x1i and 0
if not. We claim that this assignment satisfies all disjunctions. Let us namely
consider an elementary disjunction, say, xi ∨ xj . If both of its members were
false then—according to the definition—there were a directed path from x1i
to x0i and from x1j to x0j . Further, according to the definition of the graph,
there is an edge from x0i to x1j and from x0j to x1i . But then, x0i and x1i are
in a strongly connected component, which is a contradiction.

Theorem 4.4.8. The language SAT-3 is NP-complete.

Proof. Let B be a Boolean formula of the variables x1, . . . , xn. For each
variable xj , replace the i-th occurrence of xj in B, with new variable yij : let
the new formula be B′. For each j, assuming there are m occurrences of xj
in B, form the conjunction

Cj = (y1j ⇒ y2j) ∧ (y2j ⇒ y3j) ∧ · · · ∧ (ymj ⇒ y1j).

(Of course, y1j ⇒ y2j is equivalent to y1j ∨ y2j , so the above can be rewritten
into a conjunctive normal form.) The formula B′ ∧ C1 ∧ · · · ∧ Cn contains
at most 3 occurrences of each variable, is a conjunctive normal form if B is,
and is satisfiable obviously if and only if B is.

Exercise 4.4.3. Define 3-SAT-3 and show that it is NP-complete.

Exercise 4.4.4. Define SAT-2 and show that it is in P.

4.5. Further NP-complete problems 109

4.5 Further NP-complete problems

One might think that NP-complete problems are of logical character. In
what follows, we will show the NP-completeness of a number of important
“everyday” combinatorial, algebraic, etc. problems. When we show that a
problem is NP-complete, then it follows that it is not in P unless P = NP.
Therefore, we can consider the NP-completeness of a language as a proof of
its undecidability in polynomial time.

Let us formulate a fundamental combinatorial problem:

Problem 4.5.1 (Blocking Set Problem). Given a system {A1, . . . , Am} of
finite sets and a natural number k, is there a set with at most k elements
intersecting every Ai?

We have met a special case of this problem, the Blocking Set Problem for
the edges of a bipartite graph in Section 3.1. This special case was polynomial
time solvable. In contrast to this, we prove:

Theorem 4.5.1. The Blocking Set Problem is NP-complete.

Proof. We reduce 3-SAT to this problem. For a given conjunctive 3-normal
form B we construct a system of sets as follows: let the underlying set be the
set {x1, . . . , xn, x1, . . . , xn} of the variable symbols occurring in B and their
negations. For each clause of B, let us take the set of literals occurring in it;
let us further take the sets {xi, xi}. The elements of this set system can be
blocked with at most n nodes if and only if the normal form is satisfiable.

The Blocking Set Problem remains NP-complete even if we impose various
restrictions on the set system. It can be seen from the above construction
that the Blocking Set Problem is NP-complete even for a system of sets with
at most three elements. (We will see a little later that this holds even if
the system contains only two-element sets, i.e., the edges of a graph.) If we
reduce the language SAT first to the language SAT-3 according to Theorem
4.4.8 and apply to this the above construction then we obtain a set system
for which each element of the underlying set is in at most 4 sets.

With a little care, we can show that the Blocking Set Problem remains
NP-complete even for set-systems in which each element is contained in at
most 3 sets. Indeed, it is easy to reduce the Satisfiability Problem to the case
when the input is a conjunctive normal form in which every variable occurs at
least once negated and at least once unnegated; then the construction above
gives such a set-system.

We cannot go further than this: if each element is in at most 2 sets then
the Blocking Set Problem is solvable in polynomial time. In fact, it is easy to
reduce this special case of the blocking set problem to the matching problem.

110 4. Non-deterministic algorithms

It is easy to see that the following problem is equivalent to the Blocking Set
Problem (only the roles of “elements” and “subsets” must be interchanged):

Problem 4.5.2 (Covering problem). Given a system {A1, . . . , Am} of sub-
sets of a finite set S and a natural number k. Can k sets be selected in such
a way that their union is the whole set S?

According to the discussion above, this problem is NP-complete even when
each of the given subsets has at most 3 elements but it is in P if the size of
the subsets is at most 2.

For set systems, the following pair of problems is also important.

Problem 4.5.3 (k-partition problem). Given a system {A1, . . . , Am} of sub-
sets of a finite set V and a natural number k. Can a subsystem of k sets
{Ai1 , . . . , Aik} be selected that gives a partition of the underlying set (i.e.,
consists of disjoint sets whose union is the whole set V)?

Problem 4.5.4 (Partition problem). Given a system {A1, . . . , Am} of sub-
sets of a finite set S. Can a subsystem (of any size) be selected that gives a
partition of the underlying set?

If all the Ai’s are of the same size, then of course the number of sets in a
partition is uniquely determined, and so the two problems are equivalent.

Theorem 4.5.2. The k-partition problem and the partition problem are NP-
complete.

Proof. We reduce the Covering Problem with sets having at most 3 elements
to the k-partition problem. Thus we are given a system of sets with at most 3
elements each and a natural number k. We want to decide whether k of these
given sets can be selected in such a way that their union is the whole S. Let
us expand the system by adding all subsets of the given sets (it is here that
we exploit the fact that the given sets are bounded: from this, the number
of sets grows at most 23 = 8-fold). Obviously, if k sets of the original system
cover S then k appropriate sets of the expanded system provide a partition
of S, and vice versa. In this way, we have found that the k-partition problem
is NP-complete.

Second, we reduce the k-partition problem to the partition problem. Let
U be a k-element set disjoint from S. Let our new underlying set be S ∪ U ,
and let our new set system contain all the sets of form Ai∪{u} where u ∈ U .
Obviously, if from this new set system, some sets can be selected that form
a partition of the underlying set then the number of these is k and the parts
falling in S give a partition of S into k sets. Conversely, every partition of S
into k sets Ai provides a partition of the set S ∪U into sets from the new set
system. Thus, the partition problem is NP-complete.

4.5. Further NP-complete problems 111

x1

x xx x

xxx

2

2

3

3

4

4

1

u v

Figure 4.5.1: The graph whose 3-coloring is equivalent to satisfying the ex-
pression (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

If the given sets have two elements then the Partition problem is just the
perfect matching problem and can therefore be solved in polynomial time.
On the other hand, the Partition problem for sets with at most 3 elements is
NP-complete.

Next we treat a fundamental graph-theoretic problem, the coloring prob-
lem. We have seen that the problem of coloring with two colors is solvable
in polynomial time. On the other hand:

Theorem 4.5.3. The problem whether a graph can be colored with three
colors is an NP-complete problem.

Proof. Let a 3-formB be given; we construct a graphG for it that is colorable
with three colors if and only if B is satisfiable.

For the nodes of the graphG, we first take the literals, and we connect each
variable with its negation. We take two more nodes, u and v, and connect
them with each other, further we connect u with all unnegated and negated
variables. Finally, we take a pentagon for each elementary disjunction zi1 ∨
zi2 ∨ zi3 ; we connect two neighboring vertices of the pentagon with v, and
its three other vertices with zi1 , zi2 and zi3 . We claim that the graph G
thus constructed is colorable with three colors if and only if B is satisfiable
(Figure 4.5.1).

The following observation, which can be very easily verified, plays a key
role in the proof: if for some clause zi1 ∨ zi2 ∨ zi3 , the nodes zi1 , zi2 , zi3
and v are colored with three colors then this coloring can be extended to the
pentagon as a legal coloring if and only if the colors of zi1 , zi2 , zi3 and v are
not identical.

112 4. Non-deterministic algorithms

Let us first assume that B is satisfiable, and let us consider the correspond-
ing value assignment. Color red those (negated or unnegated) variables that
are “true”, and blue the others. Color u yellow and v blue. Since every el-
ementary disjunction must contain a red node, this coloring can be legally
extended to the nodes of the pentagons.

Conversely, let us assume that the graph G is colorable with three colors
and let us consider a “legal” coloring with red, yellow and blue. We can
assume that the node v is blue and the node u is yellow. Then the nodes
corresponding to the variables can only be blue and red, and between each
variable and its negation, one is red and the other one is blue. Then the fact
that the pentagons are also colored implies that each elementary disjunction
contains a red node. But this also means that taking the red nodes as “true”,
we get a value assignment satisfying B.

It follows easily from the previous theorem that for every number k ≥ 3
the k-colorability of graphs is NP-complete.

The following is another very basic graph theory problem. A set S of
nodes of a graph is independent, if no edge connects any two of them.

Problem 4.5.5 (Independent node set problem). Given a graph G and a
natural number k, is there an independent set of nodes of size k in G?

Theorem 4.5.4. The Independent node set problem is NP-complete.

Proof. We reduce to this problem the problem of coloring with 3 colors.
Let G be an arbitrary graph with n nodes and let us construct the graph
H as follows: Take three disjoint copies G1, G2, G3 of G and connect the
corresponding nodes of the three copies. Let H be the graph obtained, this
has thus 3n nodes.

We claim that there are n independent nodes in H if and only if G is
colorable with three colors. Indeed, if G is colorable with three colors, say,
with red, blue and yellow, then the nodes in G1 corresponding to the red
nodes, the nodes in G2 corresponding to the blue nodes and the nodes in G3

corresponding to the yellow nodes are independent even if taken together in
H , and their number is n. The converse can be proved similarly.

In the set system constructed in the proof of Theorem 4.5.1 there were
sets of at most three elements, for the reason that we reduced the 3-SAT
problem to the Blocking Set Problem. Since the 2-SAT problem is in P, we
could expect that the Blocking Set Problem for two-element sets is in P. We
note that this case is especially interesting since the issue here is the blocking
of the edges of graphs. We can notice that the nodes outside a blocking set
are independent (there is no edge among them). The converse is true in the
following sense: if an independent set is maximal (no other node can be added

4.5. Further NP-complete problems 113

to it while preserving independence) then its complement is a blocking set for
the edges. Our search for a minimum Blocking set can therefore be replaced
with a search for a maximum independent set, which is also a fundamental
graph-theoretical problem.

Remark. The independent vertex set problem (and similarly, the Blocking
set problem) is NP-complete only if k is part of the input. It is namely
obvious that if we fix k (e.g., k = 137) then for a graph of n nodes it can be
decided in polynomial time (in the given example, in time O(n137)) whether
it has k independent nodes. The situation is different with colorability, where
already the colorability with 3 colors is NP-complete.

Exercise 4.5.1. Prove that it is also NP-complete to decide whether in a
given 2n-vertex graph, there is an n-element independent set.

Exercise 4.5.2. Prove that it is also NP-complete to decide whether the
chromatic number of a graph G (the smallest number of colors with which
its vertices can be colored) is equal to the number of elements of its largest
complete subgraph.

Exercise 4.5.3. Prove that the covering problem, if every set in the set
system is restricted to have at most 2 elements, is reducible to the matching
problem.

Exercise 4.5.4. Prove that for hypergraphs, already the problem of coloring
with two colors is NP-complete: Given a system {A1, . . . , An} of subsets of a
finite set. Can the nodes of S be colored with two colors in such a way that
each Ai contains nodes of both colors?

From the NP-completeness of the Independent node set problem, we get
the NP-completeness of two other basic graph-theory problems for free. First,
notice that the complement of an independent set of nodes is a blocking set
for the family of edges, and vice versa. Hence we get that the Blocking Set
Problem for the family of edges of a graph is NP-complete. (Recall that in
the special case when the graph is bipartite, then the minimum size of a
blocking set is equal to the size of a maximum matching, and therefore it can
be computed in polynomial time.)

Another easy transformation is to look at the complementary graph G of
G (this is the graph on the same set of nodes, with “adjacent” and “non-
adjacent” interchanged). An independent set in G corresponds to a clique
(complete subgraph) in G and vice versa. Thus the problem of finding a
k-element independent set is (trivially) reduced to the problem of finding a
k-element clique, so we can conclude that the problem of deciding whether a
graph has a clique of size k is also NP-complete.

Many other important combinatorial and graph-theoretical problems are
NP-complete:

114 4. Non-deterministic algorithms

• Does a given graph have a Hamiltonian circuit?

• Can we cover the nodes with disjoint triangles? (For “2-angles”, this is
the matching problem!),

• Does there exist a family of k node-disjoint paths connecting k given
pairs of nodes?

The book “Computers and Intractability” by Garey and Johnson (Freeman,
1979) lists NP-complete problems by the hundreds.

A number of NP-complete problems are known also outside combinatorics.
The most important one among these is the following. In fact, the NP-
completeness of this problem was observed (informally, without an exact
definition or proof) by Edmonds several years before the Cook–Levin Theo-
rem.

Problem 4.5.6 (Linear Diophantine Inequalities). Given a system Ax ≤ b of
linear inequalities with integer coefficients, decide whether it has a solution in
integers. (Recall that the epithet “Diophantine” indicates that we are looking
for the solution among integers.)

Theorem 4.5.5. The solvability of a Diophantine system of linear inequali-
ties is an NP-complete problem.

Here we only prove that the problem is NP-hard. It is a little more involved
to prove that the problem is contained in NP, as we have already mentioned
in Section 4.3 at o) Existence of an integer solution.

Proof. Let a 3-form B be given over the variables x1, . . . , xn. Let us take the
following inequalities:

0 ≤ xi ≤ 1 for all i,

xi1 + xi2 + xi3 ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B,

xi1 + xi2 + (1 − xi3) ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B,

xi1 + (1− xi2) + (1 − xi3) ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B,

(1 − xi1) + (1− xi2) + (1 − xi3) ≥ 1 if xi1 ∨ xi2 ∨ xi3 is in B.

The solutions of this system of inequalities are obviously exactly the value
assignments satisfying B, and so we have reduced the problem 3-SAT to the
problem of solvability in integers of systems of linear inequalities.

We mention that already a very special case of this problem is NP-complete:

Problem 4.5.7 (Subset sum problem). Given natural numbers a1, . . . , am
and b. Does there exist a set I such that

∑

i∈I ai = b? (The empty sum is 0
by definition.)

4.5. Further NP-complete problems 115

Theorem 4.5.6. The subset sum problem is NP-complete.

Proof. We reduce the partition problem to the subset sum problem. Let
{A1, . . . , Am} be a family of subsets of the set S = {0, . . . , n − 1}, we want
to decide whether it has a subfamily giving a partition of S. Let q = m + 1
and let us assign a number ai =

∑

j∈Ai
qj to each set Ai. Further, let

b = 1+ q+ · · ·+ qn−1. We claim that Ai1 ∪ · · · ∪Aik is a partition of the set
S if and only if

ai1 + · · ·+ aik = b.

The “only if” is trivial. Conversely, assume ai1 + · · ·+ aik = b. Let dj be the
number of those sets Air that contain the element j (0 ≤ j ≤ n− 1). Then

ai1 + · · ·+ aik =
∑

j

djq
j .

Each dj is at most m = q − 1, so this gives a representation of the integer
b with respect to the number base q. Since q > m, this representation is
unique, and it follows that dj = 1, i.e., Ai1 ∪ · · · ∪Aik is a partition of S.

This last problem illustrates nicely that the way we encode numbers can
significantly influence the complexity of a problem. Let us assume that each
number ai is encoded in such a way that it requires ai bits (e.g., with a
sequence 1 · · · 1 of length ai). In short, we say that we use the unary notation.
The length of the input will increase this way, and therefore the number of
steps an algorithm makes on it when measured as a function of the input,
will become smaller.

Theorem 4.5.7. In unary notation, the subset sum problem is polynomially
solvable.

(The general problem of solving linear inequalities over the integers is NP-
complete even under unary notation; this is shown by the proof of Theorem
4.5.5 where only coefficients with absolute value at most 2 are used.)

Proof. For every p with 1 ≤ p ≤ m, we determine the set Tp of those natural
numbers t that can be represented in the form ai1 + · · ·+aik , where 1 ≤ i1 ≤
· · · ≤ ik ≤ p. This can be done using the following trivial recursion:

T0 = {0}, Tp+1 = Tp ∪ { t+ ap+1 : t ∈ Tp }.

If Tm is found then we must only check whether b ∈ Tm holds.
We must see yet that this simple algorithm is polynomial. This follows

immediately from the observation that Tp ⊆ {0, . . . ,∑i ai} and thus the size
of the sets Tp is polynomial in the size of the input, which is now

∑

i ai.

116 4. Non-deterministic algorithms

The method of this proof, that of keeping the results of recursive calls to
avoid recomputation later, is called dynamic programming.

Remarks. 1. A function f is called NP-hard if every problem in NP can
be reduced to it in the sense that if we add the computation of the value
of the function f to the instructions of the Random Access Machine (and
thus consider it a single step) then every problem in NP can be solved in
polynomial time (the problem itself need not be in NP).

An NP-hard function may or may not be 01-valued (i.e., the characteristic
function of a language). The characteristic function of every NP-complete
language is NP-hard, but there are languages with NP-hard characteristic
functions which are not in NP, and so are strictly harder than any problem
in NP (e.g., to decide about a position of the GO game on an n× n board,
who can win).

There are many important NP-hard functions whose values are not 0 or 1.
If there is an optimization problem associated with an NP-problem, like in
many important discrete optimization problems of operations research, then
in case the problem is NP-complete the associated optimization problem is
NP-hard. Some examples:

• the famous Traveling Salesman Problem: a non-negative “cost” is as-
signed to each edge of a graph, and we want to find a Hamiltonian cycle
with minimum cost (the cost of a Hamiltonian cycle is the sum of the
costs of its edges);

• the Steiner problem (find a connected subgraph of minimum cost (de-
fined as previously, non-negative on each edge) containing a given set
of vertices);

• the knapsack problem (the optimization problem associated with a
more general version of the subset sum problem);

• a large fraction of scheduling problems.

Many enumeration problems are also NP-hard (e.g., to determine the num-
ber of all perfect matchings, Hamiltonian cycles or legal colorings).

2. Most NP problems occurring in practice turn out to be either NP-complete
or in P. Nobody succeeded yet to put either into P or among the NP-complete
ones the following problems:

BOUNDED DIVISOR. Does a given natural number n have a proper
divisor not greater than k?

GRAPH ISOMORPHISM. Are two given graphs isomorphic?

For both problems it is expected that they are neither in P nor NP-
complete.

4.5. Further NP-complete problems 117

3. When a problem turns out to be NP-complete we cannot hope to find for it
such an efficient, polynomial algorithm such as e.g., for the matching problem.
Since such problems can be very important in practice we cannot give them
up because of such a negative result. Around an NP-complete problem, a
mass of partial results of various types are born: special classes for which it
is polynomially solvable; algorithms that are exponential in the worst case
but are fairly well usable for not too large inputs, or for problems occurring
in practice (whether or not we are able to describe the special structure
of “real word” problems that make them easy); heuristics, approximation
algorithms that do not give exact solution but (provably or in practice) give
good approximation. It is, however, sometimes just the complexity of the
problems that can be utilized: see Chapter 12.

Exercise 4.5.5. Show that the Satisfiablity Problem can be reduced to the
special case when each variable occurs at least once unnegated and at least
once negated.

Exercise 4.5.6. In the GRAPH EMBEDDING PROBLEM, we are given a
pair (G1, G2) of graphs. The question is whether G2 has a subgraph isomor-
phic to G1. Prove that this problem is NP-complete.

Exercise 4.5.7. Prove that if a system of sets is such that every element of
the (finite) underlying set belongs to at most two sets of the system, then
the Blocking Set Problem for this system is polynomial time solvable.

[Hint: reduce it to the general matching problem.]

Exercise 4.5.8. An instance of the problem of 0-1 Integer Programming is
defined as follows. The input of the problem is arrays of integers aij , bi for
i = 1, . . . ,m, j = 1, . . . , n. The task is to see if the set of equations

n
∑

j=1

aijxj = bi (i = 1, . . . ,m)

is satisfiable with xj = 0, 1. The Subset Sum Problem is a special case with
m = 1.

Make a direct reduction of the 0-1 Integer Programming problem to the
Subset Sum Problem.

Exercise 4.5.9. The SUM PARTITION PROBLEM is the following. Given
a set A = {a1, . . . , an} of integers, decide whether there exists a set I such
that

∑

i∈I ai =
∑

i6∈I ai. Prove that this problem is NP-complete. [Hint: use
the NP-completeness of the subset sum problem.]

Exercise 4.5.10. The bounded tiling problem B is the following language.
Its words have the form T&n&s. Here, the string T represents a set of tile

118 4. Non-deterministic algorithms

types (kit) and n is a natural number. The string s represents a sequence
of 4n − 4 tiles. The string T&n&s belongs to B if and only if there is a
tiling of an n × n square with tiles whose type is in T in such a way that
the tiles on the boundary of the square are given by s (starting, say, at the
lower left corner and going counterclockwise). Prove that the language B is
NP-complete.

Exercise 4.5.11. Consider the following tiling problem. We are given a
fixed finite set of tile types with a distinguished initial tile among them.
Our input is a number n in binary and we have to decide whether an n× n
square can be tiled by tiles of these types, when all four corners must be
the initial tile. Prove that there is a set of tiles for which this problem is
NEXPTIME-complete.

Chapter 5

Randomized algorithms

We cited Church’s Thesis in Chapter 2: every “algorithm” (in the heuristic
meaning of the word) is realizable on a Turing machine. It turned out that
other models of computation were able to solve exactly the same class of
problems.

But there is an extension of the notion of an algorithm that is more pow-
erful than a Turing machine, and still realizable in the real world. This is
the notion of a randomized algorithm: we permit “coin tossing”, i.e., we have
access to a random number generator. Such machines will be able to solve
problems that the Turing machine cannot solve (we will formulate and prove
this in an exact sense in Chapter 6); furthermore, such machines can solve
some problems more efficiently than Turing machines. We start with a dis-
cussion of such examples. The simplest example of such an application of
randomization is checking an algebraic identity; the most important is quite
certainly testing whether an integer is a prime.

Since in this way, we obtain a new, stronger mathematical notion of a ma-
chine, corresponding randomized complexity classes can also be introduced.
Some of the most important ones will be treated at the end of the chapter.

5.1 Verifying a polynomial identity

Let f(x1, . . . , xn) be a rational polynomial with n variables that has degree at
most k in each of its variables. We would like to decide whether f is identically
0 (as a function of n variables). We know from classical algebra that a
polynomial is identically 0 if and only if, after “opening its parentheses”, all
terms “cancel”. This criterion is, however, not always useful. It is conceivable,
e.g., that the polynomial is given in a parenthesized form and the opening of

119

120 5. Randomized algorithms

the parentheses leads to exponentially many terms as in

(x1 + y1)(x2 + y2) · · · (xn + yn) + 1.

It would also be good to say something about polynomials in whose definition
not only the basic algebraic operations occur but also some other ones, like
the computation of a determinant (which is a polynomial itself but is often
computed, as we have seen, in some special way).

The basic idea is that we write random numbers in place of the variables
and compute the value of the polynomial. If this is not 0 then, naturally, the
polynomial cannot be identically 0. If the computed value is 0 then though
it can happen that the polynomial is not identically 0, but “hitting” one of
its roots has very small probability; therefore in this case we can conclude
that the polynomial is identically 0; the probability that we make a mistake
is small.

If we could give real values to the variables, chosen according to the uni-
form distribution e.g., in the interval [0, 1], then the probability of error would
be 0. We must in reality, however, compute with discrete values; therefore we
assume that the values of the variables are chosen from among the integers of
the interval [0, N − 1], independently and according to the uniform distribu-
tion. In this case, the probability of error will not be 0 but it will be “small”
if N is large enough. This is the meaning of the following fundamental result.

Theorem 5.1.1 (Schwartz–Zippel Lemma). If f is a not identically 0 poly-
nomial in n variables with degree at most k, and the integers ξi (i = 1, . . . , n)
are chosen in the interval [0, N − 1] independently of each other according to
the uniform distribution then

P{f(ξ1, . . . , ξn) = 0} ≤ k

N
.

(The degree of a polynomial in several variables is defined as the largest
degree of its terms (monomials); the degree of a monomial is the sum of the
exponents of the variables in it.)

Proof. We prove the assertion by induction on n. The statement is true for
n = 1 since a polynomial in one variable of degree at most k can have at
most k roots. Let n > 1 and let us arrange f according to the powers of x1:

f = f0 + f1x1 + f2x
2
1 + · · ·+ ftx

t
1,

where f0, . . . , ft are polynomials of the variables x2, . . . , xn, the term ft is
not identically 0, and t ≤ k. Now,

5.1. Verifying a polynomial identity 121

P{f(ξ1, . . . , ξn) = 0}
≤ P{f(ξ1, . . . , ξn) = 0 | ft(ξ2, . . . , ξn) = 0} · P{ft(ξ2, . . . , ξn) = 0}
+ P{f(ξ1, . . . , ξn) = 0 | ft(ξ2, . . . , ξn) 6= 0} · P{ft(ξ2, . . . , ξn) 6= 0}
≤ P{ft(ξ2, . . . , ξn) = 0}+ P{f(ξ1, . . . , ξn) = 0 | ft(ξ2, . . . , ξn) 6= 0}.

Here we can estimate the first term by the induction hypothesis, using that
the degree of ft is at most k− t; thus the first term is at most (k− t)/N . The
second term is at most t/N (since ξ1 is independent of the variables ξ2, . . . , ξn,
therefore no matter how the latter are fixed in such a way that ft 6= 0 (and
therefore f as a polynomial of x1 is not identically 0), the probability that
ξ1 is its root is at most t/N). Hence

P{f(ξ1, . . . , ξn) = 0} ≤ k − t

N
+

t

N
≤ k

N
.

This suggests the following randomized algorithm to decide whether a
polynomial f is identically 0:

Algorithm 5.1.2. We compute f(ξ1, . . . , ξn) with integer values ξi chosen
randomly and independently of each other according to the uniform distribu-
tion in the interval [0, 2k]. If the result is not 0, we stop; f is not identically
0. If we get a 0, we repeat the computation. If 0 is obtained 100 times we
stop and declare that f is identically 0.

If f is identically 0 then this algorithm will say so. If f is not identically
0 then in every separate iteration – according to Schwartz–Zippel Lemma –
the probability that the result is 0 is less than 1/2. With 100 experiments
repeated independently of each other, the probability that this occurs every
time, i.e., that the algorithm asserts erroneously that f is identically 0, is less
than 2−100.

Two things are needed for us to be able to actually carry out this algorithm:
on the one hand, we must be able to generate random numbers (here, we
assume that this can be implemented, and even in time polynomial in the
number of bits of the integers to be generated), on the other hand, we must
be able to evaluate f in polynomial time (the size of the input is the length
of the “definition” of f ; this definition can be, e.g., an expression containing
multiplications and additions with parentheses, but also something entirely
different, e.g., a determinant form).

As a surprising example for the application of the method we present a
matching algorithm. (We have already treated the matching problem in the
earlier chapters.) Let G be a bipartite graph with the edge set E(G) whose
edges run between sets A and B, A = {a1, . . . , an}, B = {b1, . . . , bn}. Let us

122 5. Randomized algorithms

assign to each edge aibj a variable xij and construct the n× n matrix M as
follows:

mij =

{

xij if aibj ∈ E(G),
0 otherwise.

The determinant of this graph is closely connected to the matchings of the
graph G as Dénes Kőnig noticed while analyzing a work of Frobenius:

Theorem 5.1.3. There is a perfect matching in the bipartite graph G if and
only if det(M) is not identically 0.

Proof. Consider a term in the expansion of the determinant:

±m1π(1)m2π(2) · · ·mnπ(n),

where π is a permutation of the numbers 1, . . . , n. For this not to be 0, we
need that ai and bπ(i) be connected for all i; in other words, we need that
{a1bπ(1), . . . , anbπ(n)} be a perfect matching in G. In this way, if there is no
perfect matching in G then the determinant is identically 0. If there are
perfect matchings in G then to each one of them a nonzero expansion term
corresponds. Since these terms do not cancel each other (any two of them
contains at least two different variables), the determinant is not identically 0.

Since det(M) is a polynomial of the elements of the matrix M that is
computable in polynomial time (e.g., by Gaussian elimination) this theorem
offers a polynomial time randomized algorithm for the matching problem
in bipartite graphs. We mentioned it before that there is also a polynomial
time deterministic algorithm for this problem (the “Hungarian method”). One
advantage of the algorithm treated here is that it is very easy to program
(determinant-computation can generally be found in the program library). If
we use “fast” matrix multiplication methods then this randomized algorithm
is a little faster than the fastest known deterministic one: it can be completed
in time O(n2.4) instead of O(n2.5). Its main advantage is, however, that it is
well suitable to parallelization, as we will see in Chapter 10.

In non-bipartite graphs, it can also be decided by a similar but slightly
more complicated method whether there is a perfect matching. Let V =
{v1, . . . , vn} be the vertex set of the graph G. Assign again to each edge
vivj (where i < j) a variable xij and construct an asymmetric n× n matrix
T = (tij) as follows:

tij =

xij if vivj ∈ E(G), and i < j,
−xji if vivj ∈ E(G), and i > j,
0 otherwise.

The following analogue of the above cited result of Frobenius and Kőnig
(Theorem 5.1.3) comes from Tutte and we formulate it here without proof:

5.2. Primality testing 123

Theorem 5.1.4. There is a perfect matching in the graph G if and only if
det(T) is not identically 0.

This theorem offers, similarly to the case of bipartite graphs, a randomized
algorithm for deciding whether there is a perfect matching in G.

5.2 Primality testing

Let m be an odd natural number, we want to decide whether it is a prime.
We have seen in the previous chapter that this problem is in NP ∩ co−NP.
The witnesses described there did not lead, however, (at least for the time
being) to a polynomial time prime test. We will therefore give first a new,
more complicated NP description of compositeness.

Theorem 5.2.1 (“Little” Fermat Theorem). If m is a prime then am−1 − 1
is divisible by m for all natural numbers 1 ≤ a ≤ m− 1.

If the integer am−1 − 1 is divisible by m (for a given m) then we say that
a satisfies the Fermat condition.

The Fermat condition, when required for all integers 1 ≤ a ≤ m− 1, also
characterizes primes:

Lemma 5.2.2. An integer m > 0 is a prime if and only if all integers
1 ≤ a ≤ m− 1 satisfy the Fermat condition.

Indeed, if m is composite, then we can choose for a an integer not relatively
prime to m, and then am−1 − 1 is obviously not divisible by m.

A further nice feature of the Fermat condition is that it can be checked in
polynomial time for given m and a. This was discussed in Chapter 4.

Of course, we cannot check the Fermat condition for every a: this would
take exponential time. The question is therefore to which a’s should we apply
it?

We could just try a = 2. This is in fact not a bad test, and it reveals the
non-primality of many (in a sense, most) composite numbers, but it may fail.
For example, 561 = 3 · 11 · 17 is not a prime, but 561 | 2560 − 1. Any other
specific choice of a would have similar shortcoming.

The next idea is to select a random a and check the Fermat condition. If m
is a prime, then a will of course satisfy it. Suppose that m is not prime, then
at least those a’s not relatively prime to m will violate it. Unfortunately,
the number of such a’s may be minuscule compared to the number of all
choices for a, and so the probability that our random choice will pick one is
negligible. (In fact, we can compute the greatest common divisor of a and m
right away: if we can find an a not relatively prime to m, then this will yield
a proper divisor of m.)

124 5. Randomized algorithms

So we need to use a’s relatively prime to m. Unfortunately, there are
composite numbers m (the so-called pseudoprimes) for which the Fermat
condition is satisfied for all a relatively prime to m; for such numbers, it will
be especially difficult to find an integer a violating the condition. (Such a
pseudoprime is e.g., 561 = 3 · 11 · 17.)

But at least if m is not a pseudoprime, then the random choice for a works.
This is guaranteed by the following lemma.

Lemma 5.2.3. If m is not a prime and not a pseudoprime then at most half
of the integers a, 1 ≤ a ≤ m − 1 relatively prime to m satisfies the Fermat
condition.

Note that none of the non-relatively-prime a’s satisfy the Fermat condition.

Proof. Since m is not a pseudoprime, there is at least one b relatively prime
to m such that bm−1−1 is not divisible by m. Now if a is “bad”, i.e., am−1−1
is divisible by m, then ab mod m is “good”:

(ab)m−1 − 1 = (am−1 − 1)bm−1 + bm−1 − 1,

and here the first term is divisible by m but the second is not.
Hence for every a that is “bad”, we find another a′ (namely ab mod m) that

is “good”. It is easy to see that different a’s yield different “good” numbers.
Thus at least half of the numbers a must be good.

Thus, if m is not a pseudoprime then the following randomized prime test
works: check whether a randomly chosen integer 1 ≤ a ≤ m− 1 satisfies the
Fermat condition. If not then we know that m is not a prime. If yes then
repeat the procedure. If we found 100 times, independently of each other,
that the Fermat condition is satisfied then we say that m is a prime. It
can still happen that m is composite, but the probability that we picked an
integer a satisfying the condition is less than 1/2 at every step, and hence
the probability that this occurs 100 times in a row is less than 2−100.

Unfortunately, this method fails for pseudoprimes (it declares them prime
with large probability). It turns out that one can modify the Fermat condition
just a little to overcome this difficulty. Let us write the number m − 1 in
the form 2kM where M is odd. We say that a satisfies the Miller–Rabin
condition if at least one of the numbers

aM − 1, aM + 1, a2M + 1, a4M + 1, . . . , a2
k−1M + 1

is divisible by m. Note that the product of these numbers is am−1−1. Hence
every number satisfying the Miller–Rabin condition also satisfies the Fermat
condition.

5.2. Primality testing 125

If m is a prime then it divides this product, and hence it divides one
of these factors, i.e., every a satisfies the Miller–Rabin condition. If m is
composite then, however, it could happen that some a satisfies the Fermat
condition but not the Miller–Rabin condition (m can be a divisor of a product
without being the divisor of any of its factors).

Thus the Miller–Rabin condition provides a potentially stronger primality
test than the Fermat condition. The question is: how much stronger?

We will need some fundamental facts about pseudoprimes.

Lemma 5.2.4. Every pseudoprime m is
(a) odd;
(b) squarefree (not divisible by any square).

Proof. (a) If m > 2 is even then a = m− 1 will violate the Fermat condition,
since (m− 1)m−1 ≡ −1 6≡ 1 (mod m).

(b) Assume that p2 | m; let k be the largest exponent for which pk | m.
Then a = m/p−1 violates the Fermat condition since the last two terms of the
binomial expansion of (m/p− 1)m−1 are −(m− 1)(m/p) + 1 ≡ m/p+ 1 6≡ 1
(mod pk) since all earlier terms are divisible by pk. If an integer is not
divisible by pk then it is not divisible by m either, thus we are done.

Lemma 5.2.5. Let m = p1p2 · · · pt where the pi’s are different primes. The
relation am−1 ≡ 1 (mod m) holds for all a relatively prime to m if and only
if pi − 1 divides m− 1 for all i with 1 ≤ i ≤ t.

Proof. If pi−1 dividesm−1 for all i with 1 ≤ i ≤ t then am−1−1 is divisible by
pi according to the little Fermat Theorem and then it is also divisible by m.
Conversely, suppose that am−1 ≡ 1 (mod m) for all a relatively prime to m.
If e.g., p1−1 would not divide m− 1 then let g be a primitive root modulo p1
(the existence of primitive roots was stated in Theorem 4.3.5). According to
the Chinese Remainder Theorem, there is a residue class h modulo m with
h ≡ g (mod p1) and h ≡ 1 (mod pi) for all i ≥ 2. Then (h,m) = 1 and
p1 6 |hm−1 − 1, so m 6 |hm−1 − 1.

Corollary 5.2.6. The number m is a pseudoprime if and only if m =
p1p2 · · · pt where the pi’s are different primes, t ≥ 2, and (pi − 1) divides
(m− 1) for all i with 1 ≤ i ≤ t.

Remark. This is how one can show about the above example, 561, that it
is a pseudoprime.

Now we can prove the main fact that makes the Miller–Rabin test better
than the Fermat test.

Theorem 5.2.7. If m is a composite number then at least half of the numbers
1, . . . ,m− 1 violate the Miller–Rabin condition.

126 5. Randomized algorithms

Proof. Since we have already seen that the lemma holds for non-pseudo-
primes, in what follows we can assume that m is a pseudoprime. Let p1 · · · pt
(t ≥ 2) be the prime decomposition of m. By the above, these primes are
all odd and distinct, and we have (pi − 1) | (m − 1) = 2kM for all i with
1 ≤ i ≤ t.

Let l be the largest exponent with the property that none of the numbers
pi − 1 divides 2lM . Since the numbers pi − 1 are even while M is odd, such
an exponent exists (e.g., 0) and clearly 0 ≤ l < k. Further, by the definition
of l, there is a j for which pj − 1 divides 2l+1M . Therefore pj − 1 divides
2sM for all s with l < s ≤ k, and hence pj divides a2

sM − 1 for all primitive
residue classes a. Consequently pj cannot divide a2

sM +1 which is larger by
2, and hence m does not divide a2

sM + 1 either. If therefore a is a residue
class that does not violate the Miller–Rabin condition then m must already
be a divisor of one of the remainder classes aM − 1, aM + 1, a2M + 1, . . .,
a2

l−1M +1, a2
lM +1. Hence for each such a, the number m divides either the

product of the first l+1, which is (a2
lM−1), or the last one, (a2

lM+1). Let us
call the primitive residue class a modulo m an “accomplice of the first kind”
if a2

lM ≡ 1 (mod m) and an “accomplice of the second kind” if a2
lM ≡ −1

(mod m).

Let us estimate first the number of accomplices of the first kind. Consider
an index i with 1 ≤ i ≤ t. Since pi − 1 does not divide the exponent 2lM ,
Theorem 4.3.5 implies that there is a number c not divisible by pi for which
c2

lM −1 is not divisible by pi. The reasoning of Lemma 5.2.3 shows that then
at most half of the mod pi residue classes will satisfy the Fermat condition
belonging to the above exponent, i.e., such that a2

lM − 1 is divisible by pi.
According to the Chinese Remainder Theorem, there is a one-to-one corre-
spondence between the primitive residue classes with respect to the product
p1 · · · pt as modulus and the t-tuples of primitive residue classes modulo the
primes p1, . . . , pt. Thus, modulo p1 · · · pt, at most a 2t-th fraction of the prim-
itive residue classes is such that every pi divides (a2

lM − 1). Therefore, at
most a 2t-th fraction of the mod m primitive residue classes are accomplices
of the first kind.

It is easy to see that the product of two accomplices of the second kind is
one of the first kind. Hence multiplying all accomplices of the second kind
by a fixed one of the second kind, we obtain accomplices of the first kind,
and thus the number of accomplices of the second kind is at least as large
as the number of accomplices of the first kind. (If there is no accomplice
of the second kind to multiply with then the situation is even better: zero
is certainly not greater than the number of accomplices of the first kind.)
Hence even the two kinds together make up at most a 2t−1-th part of the
primitive residue classes, and so (due to t ≥ 2) at most a half.

5.2. Primality testing 127

Lemma 5.2.8. For a given m and a, it is decidable in polynomial time
whether a satisfies the Miller–Rabin condition.

For this, it is enough to recall from Chapter 3 that the remainder of ab

modulo c is computable in polynomial time. Based on these three lemmas,
the following randomized algorithm, called the Miller–Rabin test, can be
given for prime testing:

Algorithm 5.2.9. Choose a number between 1 and m − 1 randomly and
check whether it satisfies the Miller–Rabin condition. If it does not then m
is composite. If it does then choose another a. If the Miller–Rabin condition
is satisfied 100 times consecutively then we declare that m is a prime.

Ifm is a prime then the algorithm will certainly assert this. Ifm is compos-
ite then the number a chosen randomly violates the Miller–Rabin condition
with probability at least 1/2. After hundred independent experiments the
probability will therefore be at most 2−100 that the Miller–Rabin condition
is not violated even once, i.e., that the algorithm asserts that m is a prime.

Remarks. 1. If m is found composite by the algorithm then, interestingly
enough, we see this not from finding a divisor but from the fact that one of
the residues violates the Miller–Rabin condition. If at the same time, the
residue a does not violate the Fermat condition, then m cannot be relatively
prime to each of the numbers aM−1, aM+1, a2M+1, a4m+1, · · · , a2k−1M+1,
therefore computing its greatest common divisors with each one of them will
be a proper divisor of m. No polynomial algorithm (either deterministic or
randomized) is known for finding a factorization in the case when the Fermat
condition is also violated. This problem appears to be significantly more
difficult also in practice than the testing of primality. We will see in the
Chapter 12 that this empirical fact has important applications.

2. For a given m, we can try to find an integer a violating the Miller–
Rabin condition not by random choice but by trying out the numbers 1,2,
etc. It is not known how small is the first such integer if m is composite.
Using, however, a hundred year old conjecture of analytic number theory,
the so-called Generalized Riemann Hypothesis, (which is too technical to be
formulated here) one can show that it is not greater than logm. Thus, this
deterministic prime test works in polynomial time if the Generalized Riemann
Hypothesis is true.

We can use the prime testing algorithm learned above to look for a prime
number with n digits (say, in the binary number system). Choose, namely,
a number k randomly from the interval [2n−1, 2n − 1] and check whether it
is a prime, say, with an error probability of at most 2−100/n. If it is, we
stop. If it is not we choose a new number k. Now, it follows from the theory

128 5. Randomized algorithms

of prime numbers that in this interval, not only there is a prime number
but the number of primes is rather large: asymptotically (log e)2n−1/n, i.e.,
a randomly chosen n-digit number will be a prime with probability about
1.44/n. Repeating therefore this experiment O(n) times we find a prime
number with very large probability.

We can choose a random prime similarly from any sufficiently long interval,
e.g., from the interval [1, 2n].

5.3 Randomized complexity classes

In the previous sections, we treated algorithms that used random numbers.
Now we define a class of problems solvable by such algorithms.

First we define the corresponding machine. A randomized Turing ma-
chine is a deterministic Turing machine which has, besides the usual (input-,
work- and result-) tapes, also a tape on whose every cell a bit (say, 0 or 1)
is written that is selected randomly with probability 1/2. The bits written
on the different cells are mutually independent. The machine itself works
deterministically but its computation depends, of course, on chance (on the
symbols written on the random tape).

Every legal computation of a randomized Turing machine has some prob-
ability. We say that a randomized Turing machine weakly decides (or,
decides in the Monte-Carlo sense) a language L if for all inputs x ∈ Σ∗,
it stops with probability at least 3/4 in such a way that in case of x ∈ L it
writes 1 on the result tape, and in case of x 6∈ L, it writes 0 on the result
tape. Shortly: the probability that it gives a wrong answer is at most 1/4.

In our examples, we used randomized algorithms in a stronger sense: they
could err only in one direction. We say that a randomized Turing machine
accepts a language L if for all inputs x, it always rejects the word x in case
of x 6∈ L, and if x ∈ L then the probability is at least 1/2 that it accepts the
word x.

We say that a randomized Turing machine strongly decides (or, decides
in the Las Vegas sense) a language L if it gives a correct answer for each
word x ∈ Σ∗ with probability 1. (Every single computation of finite length
has positive probability and so the 0-probability exception cannot be that
the machine stops with a wrong answer, only that it works for an infinite
time.)

In case of a randomized Turing machine, for each input, we can distinguish
the number of steps in the longest computation and the expected number of
steps. The class of all languages that are weakly decidable on a randomized
Turing machine in polynomial expected time is denoted by BPP (Bounded
Probability Polynomial). The class of languages that can be accepted on a
randomized Turing machine in polynomial expected time is denoted by RP

5.3. Randomized complexity classes 129

(Random Polynomial). The class of all languages that can be strongly decided
on a randomized Turing machine in polynomial expected time is denoted by
ZPP. Obviously, BPP ⊇ RP ⊇ ZPP ⊇ P.

The constant 3/4 in the definition of weak decidability is arbitrary: we
could say here any number smaller than 1 but greater than 1/2 without
changing the definition of the class BPP (it cannot be 1/2: with this proba-
bility, we can give a correct answer by coin-tossing). If the machine gives a
correct answer with probability 1/2 < c < 1 then let us repeat the compu-
tation t times on input x and accept as answer the one given more often. It
is easy to see from the Law of Large Numbers that the probability that this
answer is wrong is less than ct1 where c1 is a constant smaller than 1 depend-
ing only on c. For sufficiently large t this can be made arbitrarily small and
this changes the expected number of steps only by a constant factor.

It can be similarly seen that the constant 1/2 in the definition of acceptance
can be replaced with an arbitrary positive number smaller than 1.

Finally, we note that instead of the expected number of steps in the defini-
tion of the classes BPP and RP, we could also consider the largest number of
steps; this would still not change the classes. Obviously, if the largest number
of steps is polynomial, then so is the expected number of steps. Conversely, if
the expected number of steps is polynomial, say, at most |x|d, then according
to Markov’s Inequality, the probability that a computation lasts a longer time
than 8|x|d is at most 1/8. We can therefore build in a counter that stops the
machine after 8|x|d steps, and writes 0 on the result tape. This increases the
probability of error by at most 1/8.

The same is, however, not known for the class ZPP: the restriction of
the longest running time would lead here already to a deterministic algo-
rithm, and it is not known whether ZPP is equal to P (moreover, this is
rather expected not to be the case; there are examples for problems solvable
by polynomial Las Vegas algorithms for which no polynomial deterministic
algorithm is known).

Remark. We could also define a randomized Random Access Machine: this
would have an extra cell w in which there is always a 0 or 1 with probability
1/2. We have to add the instruction y := w to the programming language.
Every time this is executed a new random bit occurs in the cell w that is
completely independent of the previous bits. Again, it is not difficult to see
that this does not bring any significant difference.

It can be seen that every language in RP is also in NP. It is trivial that the
classes BPP and ZPP are closed with respect to the taking of complement:
they contain, together with every language L the language Σ∗ \ L. The
definition of the class RP is not such and it is not known whether this class

130 5. Randomized algorithms

is closed with respect to complement. It is therefore worth defining the class
co−RP: A language L is in co−RP if Σ∗ \ L is in RP.

“Witnesses” provided a useful characterization of the class NP. An analo-
gous theorem holds also for the class RP.

Theorem 5.3.1. A language L is in RP if and only if there is a language
L′ ∈ P and a polynomial f(n) such that

(i) L = { x ∈ Σ∗ : ∃y ∈ Σf(|x|) x&y ∈ L′ } and

(ii) if x ∈ L, then at least half of the words y of length f(|x|) are such that
x&y ∈ L′.

Proof. Similar to the proof of the corresponding theorem on NP (Theorem
4.2.1).

The connection of the classes RP and ∆RP is closer than it could be
expected on the basis of the analogy to the classes NP and P:

Theorem 5.3.2. The following properties are equivalent for a language L:

(i) L ∈ ZPP;

(ii) L ∈ RP ∩ co−RP;

(iii) There is a randomized Turing machine with polynomial (worst-case)
running time that can write, besides the symbols “0” and “1”, also the
words “I GIVE UP”; the answers “0” and “1” are never wrong, i.e., in
case of x ∈ L the result is “1” or “I GIVE UP”, and in case of x 6∈ L it
is “0” or “I GIVE UP”. The probability of the answer “I GIVE UP” is
at most 1/2.

Proof. It is obvious that (i) implies (ii). It can also be easily seen that (ii)
implies (iii). Let us submit x to a randomized Turing machine that accepts L
in polynomial time and also to one that accepts Σ∗ \L in polynomial time. If
the two give opposite answers then the answer of the first machine is correct.
If they give identical answers then we “give it up”. In this case, one of them
made an error and therefore this has a probability at most 1/2.

Finally, to see that (iii) implies (i) we just have to modify the Turing
machine T0 given in (iii) in such a way that instead of the answer “I GIVE
UP”, it should start again. If on input x, the number of steps of T0 is τ and
the probability of giving it up is p then on this same input, the expected
number of steps of the modified machine is

∞
∑

t=1

pt−1(1− p)tτ =
τ

1− p
≤ 2τ.

5.3. Randomized complexity classes 131

For our example about polynomials not identically 0, it is only known
that the decision problem is in RP and not known whether it belongs to ZPP
or P. Among the algebraic (mainly group-theoretical) problems, there are
many that are in RP or ZPP but no polynomial algorithm is known for their
solution.

Remark. The algorithms that use randomization should not be confused
with the algorithms whose performance (e.g., the expected value of their
number of steps) is being examined for random inputs. Here we did not
assume any probability distribution on the set of inputs, but considered the
worst case. The investigation of the behavior of algorithms on random inputs
coming from a certain distribution is an important but difficult area, still in
its infancy, that we will not treat here.

Exercise 5.3.1. Suppose that some experiment has some probability p of
success. Prove that in n3 experiments, it is possible to compute an approxi-
mation p̂ of p such that the probability of |p− p̂| >

√

p(1− p)/n is at most
1/n. [Hint: Use Chebychev’s Inequality.]

Exercise 5.3.2. We want to compute a real quantity a. Suppose that we
have a randomized algorithm that computes an approximation A (which is a
random variable) such that the probability that |A− a| > 1 is at most 1/20.
Show that by calling the algorithm t times, you can compute an approxima-
tion B such that the probability that |B − a| > 1 is at most 2−t.

Exercise 5.3.3. Suppose that somebody gives you three n × n matrices
A,B,C (of integers of maximum length l) and claims C = AB. You are too
busy to verify this claim exactly and instead do the following. You choose
a random vector x of length n whose entries are integers chosen uniformly
from some interval [0, . . . , N − 1], and check A(Bx) = Cx. If this is true you
accept the claim otherwise you reject it.

• How large must N be chosen to make the probability of false acceptance
smaller than 0.01?

• Compare the time complexity the probabilistic algorithm to the one of
the deterministic algorithm computing AB.

Exercise 5.3.4. Show that if m is a pseudoprime then the Miller–Rabin test
not only discovers this with large probability but it can also be used to find
a decomposition of m into two factors.

Exercise 5.3.5. Formulate what it means that a randomized RAM accepts
a certain language in polynomial time and show that this is equivalent to the
fact that some randomized Turing machine accepts it.

132 5. Randomized algorithms

Exercise 5.3.6. Let us call a Boolean formula with n variables robust if
it is either unsatisfiable or has at least 2n/n2 satisfying assignments. Give
a probabilistic polynomial algorithm to decide the satisfiability of robust
formulas.

Chapter 6

Information complexity: the

complexity-theoretic notion

of randomness

The mathematical foundation of probability theory appears among the al-
ready mentioned famous problems of Hilbert formulated in 1900. Von Mises
made an important attempt in 1919 to define the randomness of a 0-1 se-
quence. His attempt can be sketched as follows. We require that the fre-
quency of 0’s and 1’s be approximately the same. This is clearly not enough,
but we can require the same to hold also if we select every second number of
the sequence. More generally, we can require the same for all subsequences
obtained by selecting indices from an arithmetic progression. This approach,
however, did not prove sufficiently fruitful.

In 1931 Kolmogorov initiated another approach, using measure theory.
His theory was very successful from the point of view of probability theory,
and it is the basis of the rigorous development of probability theory in any
textbook today.

However, this standard approach fails to capture some important aspects.
For example, in probability theory based on measure theory, we cannot speak
of the randomness of a single 0-1 sequence, only of the probability of a set
of sequences. At the same time, in an everyday sense, it is “obvious” that
the sequence “Head, Head, Head,...” cannot be the result of coin tossing. In
the 1960’s Kolmogorov and independently Chaitin revived the idea of von
Mises, using complexity-theoretic tools. They defined the information com-
plexity (information content) of a sequence; then (roughly speaking) random
sequences are those whose information content is as large as possible. The

133

134 6. Information complexity

importance of these results goes beyond the foundation of probability theory;
it contributes to the clarification of the basic notions in several fields like data
compression, information theory and statistics.

In this chapter we introduce the notion of information complexity first.
Next we treat the notion of self-delimiting information complexity. While
this may seem just a technical variant of the basic notion, it is important
because (unlike in the case of, say, Turing machines, where such variants
turn out to be equivalent) self-delimiting information complexity has quite
different properties in many respects. Then we discuss the notion of an
informatically random sequence, and show that such sequences behave like
“usual” random sequences: they obey the Laws of Large Numbers. Finally,
we discuss the problem of optimal encoding of various structures.

6.1 Information complexity

Fix an alphabet Σ. Let Σ0 = Σ \ {∗}. It will be convenient to identify Σ0

with the set {0, 1, . . . ,m−1}. Consider a 2-tape, universal Turing machine T
over Σ. We say that the word (program) q over Σ0 prints word x if writing q
on the second tape (the program tape) of T and leaving the first tape empty,
the machine stops in finitely many steps with the word x on its first tape
(the data tape).

Let us note right away that every word is printable on T . There is namely
a one-tape (perhaps large, but rather trivial) Turing machine Sx that, when
started with the empty tape, writes the word x onto it and halts. This Turing
machine can be simulated by a program qx that, in this way, prints x.

The information complexity (also called Kolmogorov complexity) of a
word x ∈ Σ∗

0 we mean the length of the shortest word (program) that makes
T print the word x. We denote the complexity of the word x by KT (x).

We can also consider the program printing x as a “code” of the word x
where the Turing machine T performs the decoding. This kind of code will
be called a Kolmogorov code. For the time being, we make no assumptions
about how much time this decoding (or encoding, finding the appropriate
program) can take.

We would like the complexity to be a characteristic property of the word
x and to depend on the machine T as little as possible. It is, unfortunately,
easy to make a Turing machine that is obviously “clumsy”. For example, it
uses only every second letter of each program and “skips” the intermediate
letters. Such a machine can be universal, but every word will be defined twice
as complex as on the machine without this strange behavior.

We show that if we impose some, rather simple, conditions on the machine
T then it will no longer be essential which universal Turing machine is used
for the definition of information complexity. Roughly speaking, it is enough

6.1. Information complexity 135

to assume that every input of a computation performable on T can also be
submitted as part of the program. To make this more exact, we assume that
there is a word (say, DATA) for which the following holds:

(a) Every one-tape Turing machine can be simulated by a program that
does not contain the word DATA as a subword;

(b) If T is started so that its program tape contains a word of the form
xDATAy where the word x does not contain the subword DATA, then
the machine halts if and only if it halts when started with y written on
the data tape and x on the program tape, and in fact with the same
output on the data tape.

It is easy to see that every universal Turing machine can be modified to
satisfy the assumptions (a) and (b). In what follows, we will always assume
that our universal Turing machine has these properties.

Lemma 6.1.1. There is a constant cT (depending only on T) such that
KT (x) ≤ |x|+ cT .

Proof. T is universal, therefore the (trivial) one-tape Turing machine that
does nothing (stops immediately) can be simulated on it by a program p0 (not
containing the word DATA). But then, for every word x ∈ Σ∗

0, the program
p0DATAx will print the word x and stop. Thus the constant cT = |p0| + 4
satisfies the conditions.

Remark. We had to be a little careful since we did not want to restrict what
symbols can occur in the word x. In the BASIC programming language, for
example, the instruction PRINT "x" is not good for printing words x that
contain the symbol ". We are interested in knowing how concisely the word
x can be coded in the given alphabet, and we do not allow therefore the
extension of the alphabet.

We prove now the basic theorem showing that the complexity (under the
above conditions) does not depend too much on the given machine.

Theorem 6.1.2 (Invariance Theorem). Let T and S be universal Turing
machines satisfying conditions (a), (b). Then there is a constant cTS such
that for every word x we have |KT (x)−KS(x)| ≤ cTS.

Proof. We can simulate the two-tape Turing machine S by a one-tape Turing
machine S0 in such a way that if on S, a program q prints a word x then
writing q on the single tape of S0, it also stops in finitely many steps, with
x printed on its tape. Further, we can simulate the work of Turing machine
S0 on T by a program pS0 that does not contain the subword DATA.

136 6. Information complexity

Now let x be an arbitrary word from Σ∗
0 and let qx be a shortest program

printing x on S. Consider the program pS0DATAqx on T : this obviously
prints x and has length only |qx| + |pS0 | + 4. The inequality in the other
direction is obtained similarly.

On the basis of this lemma, we will not restrict generality if we consider
T fixed and do not indicate the index T . So, K(x) is determined up to an
additive constant.

Unfortunately, the following theorem shows that in general the optimal
code cannot be found algorithmically.

Theorem 6.1.3. The function K(x) is not recursive.

Proof. The essence of the proof is a classical logical paradox, the so-called
typewriter-paradox. (This can be formulated simply as follows: let n be the
smallest number that cannot be defined with fewer than 100 symbols. We
have just defined n with fewer than 100 symbols!)

Assume, by way of contradiction, that K(x) is computable. Let c be a
natural number to be chosen appropriately. Arrange the elements of Σ∗

0 in
increasing order, and let x(k) denote the k-th word according to this ordering.
Let x0 be the first word with K(x0) ≥ c. Assuming that our language can be
programmed in the programming language Pascal let us consider the following
simple program.

var k : integer;
function x(k : integer) : integer;
...
function Kolm(k : integer) : integer;
...
begin

k := 0;
while Kolm(k) < c do k := k+ 1;
printx(k);

end.

(The dotted parts stand for subroutines computing the given functions.
The first is easy and could be explicitly included. The second is hypothetical,
based on the assumption that K(x) is computable.)

This program obviously prints x0. When determining its length we must
take into account the subroutines for the computation of the functions x(k)
and Kolm(k) = K(x(k)) (where x(k) is the k-th string); but this is a constant
(independent of c). Thus the total number of all these symbols is only log c+
O(1). If we take c large enough, this program consists of fewer than c symbols
and prints x0, which is a contradiction.

6.1. Information complexity 137

As a simple application of the theorem, we get a new proof for the undecid-
ability of the halting problem. To this end, let’s ask the following question:
Why is it not possible to compute K(x) as follows? Take all words y in
increasing order and check whether T prints x when started with y on its
program tape. Return the first y for which this happens; its length is K(x).

We know that something must be wrong here, since K(x) is not com-
putable. The only trouble with this algorithm is that T may never halt on
some y. If the halting problem were decidable, we could “weed out” in ad-
vance the programs on which T would work forever, and not even try these.
Thus we could compute K(x), therefore, the halting problem is not decidable.

Exercise 6.1.1. Show that we cannot compute the function K(x) even ap-
proximately, in the following sense: If f is a recursive function then there is
no algorithm that for every word x computes a natural number γ(x) such
that for all x

K(x) ≤ γ(x) ≤ f(K(x)).

Exercise 6.1.2. Show that there is no algorithm that for every given number
n constructs a 0-1 sequence of length n with K(x) > 2 logn.

Exercise 6.1.3. If f : Σ∗
0 → Z+ is a recursive function such that f(x) ≤

K(x) for all strings x, then f is bounded.

In contrast to Theorem 6.1.3, we show that the complexity K(x) can be
very well approximated on the average.

For this, we must first make it precise what we mean by “on the average”.
Assume that the input words come from some probability distribution; in
other words, every word x ∈ Σ∗

0 has a probability p(x). Thus

p(x) ≥ 0,
∑

x∈Σ∗
0

p(x) = 1.

We assume that p(x) is computable, i.e., each p(x) is a rational number whose
numerator and denominator are computable from x. A simple example of a
computable probability distribution is p(xk) = 2−k where xk is the k-th word
in increasing order, or p(x) = (m+ 1)−|x|−1 where m is the alphabet size.

Remark. There is a more general notion of a computable probability distri-
bution that does not restrict probabilities to rational numbers; for example,
{e−1, 1−e−1} could also be considered a computable probability distribution.
Without going into details we remark that our theorems would also hold for
this more general class.

Theorem 6.1.4. For every computable probability distribution there is an
algorithm computing a Kolmogorov code f(x) for every word x such that the
expectation of |f(x)| −K(x) is finite.

138 6. Information complexity

Proof. For simplicity of presentation, assume that p(x) > 0 for every word x.
Let x1, x2, . . . be an ordering of the words in Σ∗

0 for which p(x1) ≥ p(x2) ≥ · · · ,
and the words with equal probability are, say, in increasing order (since each
word has positive probability, for every x there are only a finite number
of words with probability at least p(x), and hence this is indeed a single
sequence).

Proposition 6.1.5. (a) Given a word x, the index i for which x = xi is
computable.

(b) Given a natural number i, the word xi is computable.

Proof. (a) Let y1, y2, . . . be all words arranged in increasing order. Given a
word x, it is easy to find the index j for which x = yj. Next, find the first
k ≥ j for which

p(y1) + · · ·+ p(yk) > 1− p(yj). (6.1.1)

Since the left-hand side converges to 1 while the right-hand side is less than
1, this will occur sooner or later.

Clearly each of the remaining words yk+1, yk+2, . . . has probability less
than p(yj), and hence to determine the index of x = yj it suffices to order
the finite set {y1, . . . , yk} according to decreasing p, and find the index of yj
among them.

(b) Given an index i, we can compute the indices of y1, y2, . . . using (a)
and wait until i shows up.

Returning to the proof of the theorem, the program of the algorithm in
the above proposition, together with the number i, provides a Kolmogorov
code f(xi) for the word xi. We show that this code satisfies the requirements
of the theorem. Obviously, |f(x)| ≥ K(x).

Furthermore, the expected value of |f(x)| −K(x) is

∞
∑

i=1

p(xi)(|f(xi)| −K(xi)).

We want to show that this sum is finite. Since its terms are non-negative, it
suffices to show that its partial sums remain bounded, i.e., that

N
∑

i=1

p(xi)(|f(xi)| −K(xi)) < C

for some C independent of N . We can express this sum as

N
∑

i=1

p(xi)(|f(xi)| − logm i) +

N
∑

i=1

p(xi)(logm i−K(xi)). (6.1.2)

6.2. Self-delimiting information complexity 139

We claim that both sums are bounded. The difference |f(xi)| − logm i is just
the length of the program computing xi without the length of the parameter
i, and hence it is an absolute constant C. Thus the first sum in (6.1.2) is at
most C.

To estimate the second term in (6.1.2), we use the following simple but
useful principle. Let a1 ≥ a2 ≥ · · · ≥ am be a decreasing sequence and let
b1, . . . , bm be an arbitrary sequence of real numbers. Let b∗1 ≥ · · · ≥ b∗m be
the sequence b ordered decreasingly, and let b∗∗1 ≤ · · · ≤ b∗∗m be the sequence
b ordered increasingly. Then

∑

i

aib
∗∗
i ≤

∑

i

aibi ≤
∑

i

aib
∗
i .

Let (z1, z2, . . . ,) be an ordering of the words so that K(z1) ≤ K(z2) ≤ . . .
(we can’t compute this ordering, but we don’t have to compute it). Then by
the above principle,

N
∑

i=1

p(xi)K(xi) ≥
N
∑

i=1

p(xi)K(zi).

The number of words x with K(x) = k is at most mk, and hence the number
of words x with K(x) ≤ k is at most 1 +m+ · · ·+mk < mk+1. This is the
same as saying that

i ≤ mK(zi)+1,

and hence
K(zi) ≥ logm i− 1.

Thus

N
∑

i=1

p(xi)(logm i−K(xi)) ≤
N
∑

i=1

p(xi)(logm i−K(zi)) ≤
N
∑

i=1

p(xi) = 1.

This proves the theorem.

6.2 Self-delimiting information complexity

The Kolmogorov-code, strictly taken, uses an extra symbol besides the al-
phabet Σ0: it recognizes the end of the program while reading the program
tape by encountering the symbol “∗”. We can modify the concept in such a
way that this should not be possible: the head reading the program should
not run beyond program. We will call a word self-delimiting if, when it is
written on the program tape of our two-tape universal Turing machine, the

140 6. Information complexity

head does not even try to read any cell beyond it. The length of the shortest
self-delimiting program printing x will be denototed by HT (x). This mod-
ified information complexity notion was introduced by Levin and Chaitin.
It is easy to see that the Invariance Theorem here also holds and therefore
it is again justified to drop the subscript and use the notation H(x). The
functions K and H do not differ too much, as it is shown by the following
lemma:

Lemma 6.2.1.

K(x) ≤ H(x) ≤ K(x) + 2 logm(K(x)) +O(1).

Proof. The first inequality is trivial. To prove the second inequality, let p be
a program of length K(x) for printing x on some machine T . Let n = |p|,
let u1 · · ·uk be the form of the number n in the base m number system.
Let u = u10u20 · · ·uk011. Then the prefix u of the word up can be uniquely
reconstructed, and from it, the length of the word can be determined without
having to go beyond its end. Using this, it is easy to write a self-delimiting
program of length 2k + n+O(1) that prints x.

From the foregoing, it may seem that the function H is a slight technical
variant of the Kolmogorov complexity. The next lemma shows a significant
difference between them.

Lemma 6.2.2.

(a)
∑

xm
−K(x) = +∞.

(b)
∑

xm
−H(x) ≤ 1.

Proof. Statement (a) follows easily from Lemma 6.1.1. In order to prove (b),
consider an optimal code f(x) for each word x. Due to the self-delimiting
property, neither of these can be a prefix of another one; thus, (b) follows
immediately from the simple but important information-theoretical lemma
below.

Lemma 6.2.3. Let L ⊆ Σ∗
0 be a language such that neither of its words is a

prefix of another one. Let m = |Σ0|. Then
∑

y∈L

m−|y| ≤ 1.

Proof. Choose letters a1, a2, . . . independently, with uniform distribution from
the alphabet Σ0; stop if the obtained word is in L. The probability that we
obtained a word y ∈ L is exactly m−|y| (since according to the assumption,
we did not stop on any prefix of y). Since these events are mutually exclusive,
the statement of the lemma follows.

6.2. Self-delimiting information complexity 141

Some interesting consequences of these lemmas are formulated in the fol-
lowing exercises.

Exercise 6.2.1. Show that the following strengthening of Lemma 6.2.1 is
not true:

H(x) ≤ K(x) + logmK(x) +O(1).

Exercise 6.2.2. The function H(x) is not recursive.

The next theorem shows that the function H(x) can be approximated well.

Theorem 6.2.4 (Levin’s Coding Theorem). Let p be a computable probability
distribution on Σ∗

0. Then for every word x we have

H(x) ≤ − logm p(x) +O(1).

Proof. Let us callm-ary rational those rational numbers that can be written
with a numerator that is a power of m. The m-ary rational numbers of the
interval [0, 1) can be written in the form 0.a1 . . . ak where 0 ≤ ai ≤ m− 1.

Subdivide the interval [0, 1) into left-closed, right-open intervals J(x1),
J(x2), . . . of lengths p(x1), p(x2), . . . respectively (where x1, x2, . . . is the in-
creasing ordering of Σ∗

0). For every x ∈ Σ∗
0 with p(x) > 0, there will be an

m-ary rational number 0.a1 . . . ak with 0.a1 . . . ak ∈ J(x) and 0.a1 . . . ak−1 ∈
J(x). We call a shortest sequence a1 . . . ak with this property the Shannon–
Fano code of x.

We claim that every word x can be computed easily from its Shannon-
Fano code. Indeed, for the given sequence a1, . . . , ak, for values i = 1, 2, . . .,
we check consecutively whether 0.a1 . . . ak and 0.a1 . . . ak−1 belong to the
same interval J(x); if yes, we print x and stop. Notice that this program
is self-delimiting: we need not know in advance the length of the code, and
if a1 . . . ak is the Shannon-Fano code of a word x then we will never read
beyond the end of the sequence a1 . . . ak. Thus H(x) is not greater than the
common length of the (constant-length) program of the above algorithm and
the Shannon-Fano code of x; about this, it is easy to see that it is at most
logm p(x) + 1.

This theorem implies that the expected value of the difference between
H(x) and − logm p(x) is bounded (compare with Theorem 6.1.4).

Corollary 6.2.5. With the conditions of Theorem 6.2.4

∑

x

p(x)|H(x) + logm p(x)| = O(1).

142 6. Information complexity

Proof.

∑

x

p(x)|H(x) + logm p(x)|

=
∑

x

p(x)|H(x) + logm p(x)|+ +
∑

x

p(x)|H(x) + logm p(x)|−.

Here, the first sum can be estimated, according to Theorem 6.2.4, as follows:
∑

x

p(x)|H(x) + logm p(x)|+ ≤
∑

x

p(x)O(1) = O(1).

We estimate the second sum as follows:

|H(x) + logm p(x)|− ≤ m−H(x)−logm p(x) =
1

p(x)
m−H(x),

and hence, according to Lemma 6.2.2,
∑

x

p(x)|H(x) + logm p(x)|− ≤
∑

x

m−H(x) ≤ 1.

Remark. The coding theorem can be further generalized, for this we intro-
duce the following definitions.

Definition 6.2.1. Let f(x) be a function on strings, taking real number
values. We say that f(x) is semicomputable if there is computable function
g(x, n) taking rational values such that g(x, n) is monotonically increasing in
n and limn→∞ g(x, n) = f(x).

We say that p(x) is a semimeasure if p(x) ≥ 0 and
∑

x p(x) ≤ 1.

Levin proved the coding theorem for the more general case when p(x) is
a semicomputable semimeasure. Lemma 6.2.2 shows that m−H(x) is a semi-
computable semimeasure. Therefore, Levin’s theorem implies that m−H(x)

is maximal, to within a multiplicative constant, among all semicomputable
semimeasures. This is a technically very useful characterization of H(x).

Let us show that the complexity H(x) can be well approximated for “almost
all” strings, where the meaning of “almost all” is given by some probability
distribution. But we will not consider arbitrary probability distributions,
only such that can be approximated, at least from below, by a computable
sequence.

Proof for the semicomputable case:

Proof. Here we prove only the case m = 2. If p(x) is semicomputable then
the set

{ (x, k) : k2−k < p(x) }

6.3. The notion of a random sequence 143

is recursively enumerable. Let { (zt, kt) : t = 1, 2, . . . } be a recursive enumer-
ation of this set without repetition. Then

∑

t

2−kt =
∑

x

∑

{ 2−kt : zt = x } ≤
∑

x

2p(x) < 2.

Let us cut off consecutive adjacent, disjoint intervals I1, I2, . . ., where It has
length 2−kt−1, from the left side of the interval [0, 1]. For any binary string w
consider the interval Jw delimited by the binary “decimals” 0.w and 0.w1. We
define a function F (w) as follows. If Jw is the largest such binary subinterval
of some It then F (w) = zt. Otherwise F (w) is undefined. It follows from the
construction that for every x there is a t with zt = x and 0.5p(x) < 2−kt .
Therefore, for every x there is a w such that F (w) = x and

|w| ≤ − log p(x) + 4.

It is easy to see that a program q can be written for our universal self-
delimiting Turing machine such that for every w, the string qw is a self-
delimiting program for F (w). (For this, it is enough to see that if F (v) and
F (w) are both defined then v is not a prefix of w.)

6.3 The notion of a random sequence

In this section, we assume that Σ0 = {0, 1}, i.e., we will consider only the
complexity of 0-1 sequences. Roughly speaking, we want to consider a se-
quence random if there is no “regularity” in it. Here, we want to be as general
as possible and consider any kind of regularity that would enable a more eco-
nomical coding of the sequence (so that the complexity of the sequence would
be small).

Remark. Note that this is not the only possible idea of regularity. One
might consider a 0-1-sequence regular if the number of 0’s in it is about the
same as the number of 1’s. This kind of regularity is compatible with (in fact
implied by) randomness: we should really consider only regularities that are
shared only by a small minority of the sequences.

Let us bound first the complexity of “average” 0-1 sequences.

Lemma 6.3.1. The number of 0-1 sequences x of length n with K(x) ≤ n−k
is less than 2n−k+1.

Proof. The number of “codewords” of length at most n− k is at most 1+2+
· · ·+ 2n−k < 2n−k+1, hence only fewer than 2n−k+1 strings x can have such
a code.

144 6. Information complexity

Corollary 6.3.2. The complexity of 99% of the n-digit 0-1 sequences is at
least n−8. If we choose a 0-1 sequence of length n randomly then |K(x)−n| ≤
100 with probability 1− 2100.

Another corollary of this simple lemma is that it shows, in a certain sense,
a “counterexample” to Church’s Thesis, as we noted in the at the beginning
of Chapter 5. Consider the following problem: For a given n, construct
a 0-1 sequence of length n whose Kolmogorov complexity is greater than
n/2. According to Exercise 6.1.2, this problem is algorithmically undecidable.
On the other hand, the above lemma shows that with large probability, a
randomly chosen sequence is appropriate.

According to Theorem 6.1.3, it is algorithmically impossible to find the
best code. There are, however, some easily recognizable properties indicating
about a word that it is codable more efficiently than its length. The next
lemma shows such a property:

Lemma 6.3.3. If the number of 1’s in a 0-1 sequence x of length n is k then

K(x) ≤ log

(

n

k

)

+O(log n).

Let k = pn (0 < p < 1), then this can be estimated as

K(x) ≤ (−p log p− (1 − p) log(1− p))n+O(log n).

In particular, if k > (1/2 + ε)n or k < (1/2− ε)n then

K(x) ≤ cn+O(log n)

where c = −(1/2 + ε) · log(1/2 + ε) − (1/2 − ε) · log(1/2 − ε) is a positive
constant smaller than 1 and depending only on ε.

Proof. x can be described as the “lexicographically t-th sequence among all
sequences of length n containing exactly k 1’s”. Since the number of sequences
of length n containing k 1’s is

(

n
k

)

, the description of the numbers t, n and
k needs only log

(

n
k

)

+ 2 logn+ 2 log k bits. (Here, the factor 2 is due to the
need to separate the three pieces of information from each other; we leave
it to the reader to find the trick.) The program choosing the appropriate
sequence needs only a constant number of bits.

The estimate of the binomial coefficient is done by a method familiar from
probability theory.

On the basis of the above, one can consider either |x| −K(x) or |x|/K(x)
as a measure of the randomness (or, rather, non-randomness) of the word
x. The larger are these numbers, the smaller is K(x) relative to |x|, which
means that x has more “regularity” and so it is less random.

6.4. Kolmogorov complexity, entropy and coding 145

In case of infinite sequences, a sharper difference can be made: we can
define whether a given sequence is random. Several definitions are possible;
we introduce here the simplest version. Let x be an infinite 0-1 sequence, and
let xn denote its starting segment formed by the first n elements. We call
the sequence x informatically (weakly) random if K(xn)/n → 1 when
n→ ∞.

It can be shown that every informatically weakly random sequence satisfies
the laws of large numbers. We consider here only the simplest such result.
Let an denote the number of 1’s in the string xn, then the previous lemma
immediately implies the following theorem:

Theorem 6.3.4. If x is informatically random then an/n→ 1/2 (n→ ∞).

The question arises whether the definition of an informatically random se-
quence is not too strict, whether there are any informatically random infinite
sequences at all. Let us show that not only there are such sequences but that
almost all sequences have this property:

Theorem 6.3.5. Let the elements of an infinite 0-1 sequence x be 0’s or 1’s,
independently from each other, with probability 1/2. Then x is informatically
random with probability 1.

Proof. For a fixed ε > 0, let Sn be the set of all those length n sequences y
for which K(y) < (1 − ε)n, and let An denote the event xn ∈ Sn . Then by
Lemma 6.3.1,

P(An) ≤
∑

y∈Sn

2−n < 2(1−ε)n+1 · 2−n = 21−εn,

and hence the sum
∑∞

n=1 P(An) is convergent. But then, the Borel–Cantelli
Lemma from probability theory implies that with probability 1, only finitely
many of the events An occur, which means that K(xn)/n→ ∞.

Remark. If the members of the sequence x are generated by an algorithm,
then xn can be computed from the program of the algorithm (constant length)
and from the number n (can be given in logn bits). Therefore, for such a
sequence K(xn) grows very slowly.

6.4 Kolmogorov complexity, entropy
and coding

Let p = (p1, p2, . . .) be a discrete probability distribution, i.e., a non-
negative (finite or infinite) sequence with

∑

i pi = 1. Its entropy is the

146 6. Information complexity

quantity
H(p) =

∑

i

−pi log pi

(the term pi log pi is considered to be 0 if pi = 0). Notice that in this sum,
all terms are nonnegative, so H(p) ≥ 0; equality holds if and only if the
value of some pi is 1 and the value of the rest is 0. It is easy to see that for
fixed alphabet size m, the probability distribution with maximum entropy is
(1/m, . . . , 1/m) and the entropy of this is logm.

Entropy is a basic notion of information theory and we do not treat it
in detail in these notes, we only point out its connection with Kolmogorov
complexity. We have met with entropy for the case m = 2 in Lemma 6.3.3.
This lemma is easy to generalize to arbitrary alphabets as

Lemma 6.4.1. Let x ∈ Σ∗
0 with |x| = n and let ph denote the relative

frequency of the letter h in the word x. Let p = (ph : h ∈ Σ0). Then

K(x) ≤ H(p)

logm
n+O

(

m logn

logm

)

.

Proof. Let us give a different proof using Theorem 6.2.4. Consider the prob-
ability distribution over the strings of length n in which each symbol h is cho-
sen with probability ph. The probabilities ph are fractions with denominator
n, hence their description needs at most O(m logn) bits, what is O(m log n

logm)
symbols of our alphabet. The distribution over the strings is therefore an
enumerable probability distribution P whose program has length O(m log n).
According to Theorem 6.2.4, we have

K(x) ≤ H(x) ≤ − logm P (x) +O(m log n).

But − logm P (x) is exactly nH(p)
logm .

Remark. We mention another interesting connection between entropy and
complexity: the entropy of a computable probability distribution over all
strings is close to the average complexity. This reformulation of Corollary
6.2.5 can be stated as

∣

∣

∣H(p)−
∑

x

p(x)H(x)
∣

∣

∣ = O(1),

for any computable probability distribution p over the set Σ∗
0.

Let L ⊆ Σ∗
0 be a recursive language and suppose that we want to find a

short program, “code”, only for the words in L. For each word x in L, we are
thus looking for a program f(x) ∈ {0, 1}∗ printing it. We call the function

6.4. Kolmogorov complexity, entropy and coding 147

f : L → Σ∗ a Kolmogorov code of L. The conciseness of the code is the
function

η(n) = max{ |f(x)| : x ∈ L, |x| ≤ n }.
We can easily get a lower bound on the conciseness of any Kolmogorov code
of any language. Let Ln denote the set of words of L of length at most n.
Then obviously,

η(n) ≥ log |Ln|.
We call this estimate the information theoretical lower bound.

This lower bound is sharp (to within an additive constant). We can code
every word x in L simply by telling its serial number in the increasing or-
dering. If the word x of length n is the t-th element then this requires
log t ≤ log |Ln| bits, plus a constant number of additional bits (the program
for taking the elements of Σ∗ in lexicographic order, checking their member-
ship in L and printing the t-th one).

We arrive at more interesting questions if we stipulate that the code from
the word and, conversely, the word from the code should be polynomially
computable. In other words: we are looking for a language L′ and two
polynomially computable functions:

f : L → L′, g : L′ → L

with g◦f = idL for which, for every x in L the code |f(x)| is “short” compared
to |x|. Such a pair of functions is called a polynomial time code. (Instead
of the polynomial time bound we could, of course, consider other complexity
restrictions.)

We present some examples when a polynomial time code approaches the
information-theoretical bound.

Example 6.4.1. In the proof of Lemma 6.3.3, for the coding of the 0-1
sequences of length n with exactly m 1’s, we used the simple coding in which
the code of a sequence is the number giving its place in the lexicographic
ordering. We will show that this coding is polynomial.

Let us view each 0-1 sequence as the obvious code of a subset of the n-
element set {n−1, n−2, . . . , 0}. Each such set can be written as {a1, . . . , am}
with a1 > a2 > · · · > am. Then the set {b1, . . . , bm} precedes the set
{a1, . . . , am} lexicographically if and only if there is an i such that bi < ai
while aj = bj holds for all j < i. Let {a1, . . . , am} be the lexicographically
t-th set. Then the number of subsets {b1, . . . , bm} with the above property
for a given i is exactly

(

ai

m−i+1

)

. Summing this for all i we find that

t = 1 +

(

a1
m

)

+

(

a2
m− 1

)

+ · · ·+
(

am
1

)

. (6.4.1)

148 6. Information complexity

So, given a1, . . . , am, the value of t is easily computable in time polynomial
in n. Conversely, if t <

(

n
m

)

is given then t is easy to write in the above
form: first we find, using binary search, the greatest natural number a1 with
(

a1

m

)

≤ t− 1, then the greatest number a2 with
(

a2

m−1

)

≤ t− 1−
(

a1

m

)

, etc. We
do this for m steps. The numbers obtained this way satisfy a1 > a2 > · · · ;
indeed, according to the definition of a1 we have

(

a1+1
m

)

=
(

a1

m

)

+
(

a1

m−1

)

> t−1

and therefore
(

a1

m−1

)

> t−1−
(

a1

m

)

implying a1 > a2. It follows similarly that
a2 > a3 > · · · > am ≥ 0 and that there is no “remainder” after m steps, i.e.,
that 6.4.1 holds. It can therefore be determined in polynomial time which
subset is lexicographically the t-th.

Example 6.4.2. Consider trees, given by their adjacency matrices (but any
other “reasonable” representation would also do). In such representations, the
vertices of the tree have a given order, which we can also express saying that
the vertices of the tree are labeled by numbers from 0 to (n−1). We consider
two trees equal if whenever the nodes i, j are connected in the first one they
are also connected in the second one and vice versa (so, if we renumber the
nodes of the tree then we may arrive at a different tree). Such trees are called
labeled trees. Let us first see what does the information-theoretical lower
bound give us, i.e., how many trees are there. The following classical result,
called Cayley’s Theorem, applies here:

Theorem 6.4.2 (Cayley’s Theorem). The number of n-node labeled trees is
nn−2.

Consequently, by the information-theoretical lower bound, for any encod-
ing of trees some n-node tree needs a code with length at least ⌈log(nn−2)⌉ =
⌈(n− 2) logn⌉. But can this lower bound be achieved by a polynomial time
computable code?

(a) Coding trees by their adjacency matrices takes n2 bits. (It is easy to see
that

(

n
2

)

bits are enough.)

(b) We fare better if we specify each tree by enumerating its edges. Then
we must give a “name” to each vertex; since there are n vertices we
can give to each one a 0-1 sequence of length ⌈logn⌉ as its name. We
specify each edge by its two endnodes. In this way, the enumeration of
the edges takes cca. 2(n− 1) logn bits.

(c) We can save a factor of 2 in (b) if we distinguish a root in the tree, say
the node 0, and we specify the tree by the sequence (α(1), . . . , α(n−1))
in which α(i) is the first interior node on the path from node i to the
root (the “father” of i). This is (n − 1)⌈logn⌉ bits, which is already
nearly optimal.

6.4. Kolmogorov complexity, entropy and coding 149

(d) There is, however, a procedure, the so-called Prüfer code, that sets up a
bijection between the n-node labeled trees and the sequences of length
n − 2 of the numbers 0, . . . , n − 1. (Thereby it also proves Cayley’s
theorem). Each such sequence can be considered the expression of a
natural number in the base n number system; in this way, we order a
“serial number” between 0 and nn−2 − 1 to the n-node labeled trees.
Expressing these serial numbers in the base two number system, we
get a coding in which the code of each number has length at most
⌈(n− 2) logn⌉.

The Prüfer code can be considered as a refinement of procedure (c). The
idea is that we order the edges [i, α(i)] not by the value of i but a little
differently. Let us define the permutation (i1, . . . , in) as follows: let i1 be the
smallest endnode (leaf) of the tree; if i1, . . . , ik are already defined then let
ik+1 be the smallest endnode of the graph remaining after deleting the nodes
i1, . . . , ik. (We do not consider the root 0 an endnode.) Let in = 0. With the
ik’s thus defined, let us consider the sequence (α(i1), . . . , α(in−1)). The last
element of this is 0 (the “father” of the node in−1 can namely be only in), it is
therefore not interesting. We call the remaining sequence (α(i1), . . . , α(in−2))
the Prüfer code of the tree.

Claim 6.4.3. The Prüfer code of a tree determines the tree.

For this, it is enough to see that the Prüfer code determines the sequence
i1, . . . , in; then we know all the edges of the tree (the pairs [i, α(i)]).

The node i1 is the smallest endnode of the tree; hence to determine i1, it is
enough to figure out the endnodes from the Prüfer code. But this is obvious:
the endnodes are exactly those that are not the “fathers” of other nodes, i.e.,
the ones that do not occur among the numbers α(i1), . . . , α(in−2), 0. The
node i1 is therefore uniquely determined.

Assume that we know already that the Prüfer code uniquely determines
i1, . . . , ik−1. It follows similarly to the above that ik is the smallest number
not occurring neither among i1, . . . , ik−1 nor among α(ik), . . . , α(in−2), 0. So,
ik is also uniquely determined.

Claim 6.4.4. Every sequence (b1, . . . , bn−2), where 0 ≤ bi ≤ n − 1, occurs
as the Prüfer code of some tree.

Using the idea of the proof above, let bn−1 = 0 and let us define the
permutation i1, . . . , in by the recursion that ik is the smallest number not
occurring neither among i1, . . . , ik−1 nor among bk, . . . , bn−1, where (1 ≤ k ≤
n − 1); and let in = 0. Connect ik with bk for all 1 ≤ k ≤ n − 1 and let
γ(ik) = bk. In this way, we obtain a graph G with n− 1 edges on the nodes
0, . . . , n−1. This graph is connected, since for every i the γ(i) comes later in

150 6. Information complexity

the sequence i1, . . . , in than i and therefore the sequence i, γ(i), γ(γ(i)), . . .
is a path connecting i to the node 0. But then G is a connected graph with
n − 1 edges, therefore it is a tree. That the sequence (b1, . . . , bn−2) is the
Prüfer code of G is obvious from the construction.

Remark. An exact correspondence like the Prüfer code has other advantages
besides optimal Kolmogorov coding. Suppose that our task is to write a
program for a randomized Turing machine that outputs a random labeled
tree of size n in such a way that all trees occur with the same probability.
The Prüfer code gives an efficient algorithm for this. We just have to generate
randomly a sequence b1, . . . , bn−2, which is easy, and then decode from it the
tree by the above algorithm.

Example 6.4.3. Consider now the unlabeled trees. These can be defined as
the equivalence classes of labeled trees where two labeled trees are considered
equivalent if they are isomorphic, i.e., by a suitable relabeling, they become
the same labeled tree. We assume that we represent each equivalence class
by one of its elements, i.e., by a labeled tree (it is not interesting now, by
which one). Since each labeled tree can be labeled in at most n! ways (its
labelings are not necessarily all different as labeled trees!) therefore the
number of unlabeled trees is at least nn−2/n! > 2n−2 (if n ≥ 25). The
information-theoretical lower bound is therefore at least n − 2. (According
to a difficult result of George Pólya, the number of n-node unlabeled trees
is asymptotically c1cn2n

3/2 where c1 and c2 are constants defined in a certain
complicated way.)

On the other hand, we can use the following coding procedure. Consider
an n-node tree F . Walk through F by the “depth-first search” rule: Let x0
be the node labeled 0 and define the nodes x1, x2, . . . as follows: if xi has a
neighbor that does not occur yet in the sequence then let xi+1 be the smallest
one among these. If it does not have such a neighbor and xi 6= x0 then let
xi+1 be the neighbor of xi on the path leading from xi to x0. Finally, if
xi = x0 and every neighbor of x0 occured already in the sequence then we
stop.

It is easy to see that for the sequence thus defined, every edge occurs among
the pairs [xi, xi+1], moreover, it occurs once in both directions. It follows that
the length of the sequence is exactly 2n− 1. Let now εi = 1 if xi+1 is farther
from the root than xi and εi = 0 otherwise. It is easy to understand that
the sequence ε0ε1 · · · ε2n−3 determines the tree uniquely; passing trough the
sequence, we can draw the graph and construct the sequence x1, . . . , xi of
nodes step-for-step. In step (i + 1), if εi = 1 then we take a new node (this
will be xi+1) and connect it with xi; if εi = 0 then let xi+1 be the neighbor
of xi in the “direction” of x0.

6.4. Kolmogorov complexity, entropy and coding 151

Remarks. 1. With this coding, the code assigned to a tree depends on
the labeling but it does not determine it uniquely (it only determines the
unlabeled tree uniquely).
2. The coding is not bijective: not every 0-1 sequence will be the code of an
unlabeled tree. We can notice that

(a) there are as many 1’s as 0’s in each tree;
(b) in every starting segment of every code, there are at least as many 1’s

as 0’s.
(The difference between the number of 1’s and the number of 0’s among

the first i numbers gives the distance of the node xi from the node 0). It is
easy to see that for each 0-1 sequence having the properties (a)–(b), there
is a labeled tree whose code it is. It is not sure, however, that this tree,
as an unlabeled tree, is given with just this labeling (this depends on which
unlabeled trees are represented by which of their labelings). Therefore, the
code does not even use all the words with properties (a)–(b).
3. The number of 0-1 sequences having properties (a)–(b) is, according to a
well-known combinatorial theorem, 1

n

(

2n−2
n−1

)

(the so-called Catalan number).
We can formulate a tree notion to which the sequences with properties (a)–(b)
correspond exactly: these are the rooted planar trees, which are drawn
without intersection into the plane in such a way that their distinguished
vertex – their root – is on the left edge of the page. This drawing defines
an ordering among the “sons” (neighbors farther from the root) “from the
top to the bottom”; the drawing is characterized by these orderings. The
above described coding can also be done in rooted planar trees and creates a
bijection between them and the sequences with the properties (a)–(b).

Exercise 6.4.1. (a) Let x be a 0-1 sequence that does not contain 3 consec-
utive 0’s. Show that K(x) < .99|x|+O(1).

(b) Find the best constant in place of .99. [Hint: you have to find approx-
imately the number of such sequences. Let A(n) and B(n) be the number of
such sequences ending with 0 and 1, respectively. Find recurrence relations
for A and B.]

(c) Give a polynomial time coding-decoding procedure for such sequence
that compresses each of them by at least 1 percent.

Exercise 6.4.2. (a) Prove that for any two strings x, y ∈ Σ∗
0,

K(xy) ≤ 2K(x) +K(y) + c,

where c depends only on the universal Turing machine in the definition of
infromation complexity.

(b) Prove that the stronger and more natural looking inequality

K(xy) ≤ K(x) +K(y) + c

is false.

152 6. Information complexity

Exercise 6.4.3. Suppose that the universal Turing machine used in the
definition of K(x) uses programs written in a two-letter alphabet and outputs
strings in an s-letter alphabet.

(a) Prove that K(x) ≤ |x| log s+O(1).

(b) Prove that, moreover, there are polynomial time functions f, g mapping
strings x of length n to binary strings of length n log s+O(1) and vice
versa with g(f(x)) = x.

Exercise 6.4.4.

(a) Give an upper bound on the Kolmogorov complexity of Boolean func-
tions of n variables.

(b) Give a lower bound on the complexity of the most complex Boolean
function of n variables.

(c) Use the above result to find a number L(n) such that there is a Boolean
function with n variables which needs a Boolean circuit of size at least
L(n) to compute it.

Exercise 6.4.5. Call an infinite 0-1 sequence x (informatically) strongly
random if n−H(xn) is bounded from above. Prove that every informatically
strongly random sequence is also weakly random.

Exercise 6.4.6. Prove that almost all infinite 0-1 sequences are strongly
random.

Chapter 7

Pseudorandom numbers

We have seen that various important algorithms use random numbers (or,
equivalently, independent random bits). But how do we get such bits?

One possible source is from outside the computer. We could obtain “real”
random sequences, say, from radioactive decay. In most cases, however, this
would not work: our computers are very fast and we have no physical device
giving the equivalent of unbiased coin-tosses at this rate.

Thus we have to resort to generating our random bits by the computer.
However, a long sequence generated by a short program is never random,
according to the notion of randomness introduced in Chapter 6 using in-
formation complexity. Thus we are forced to use algorithms that generate
random-looking sequences; but, as Von Neumann (one of the first mathemati-
cians to propose the use of these) put it, everybody using them is inevitably
“in the state of sin”. In this chapter, we will understand the kind of protection
we can get against the graver consequences of this sin.

There are other reasons besides practical ones to study pseudorandom
number generators. We often want to repeat some computation for various
reasons, including error checking. In this case, if our source of random num-
bers was really random, then the only way to use the same random numbers
again is to store them, using a lot of space. With pseudorandom numbers,
this is not the case: we only have to store the “seed”, which is much shorter.
Another, and more important, reason is that there are applications where
what we want is only that the sequence should “look random” to somebody
who does not know how it was generated. The collection of these applications
called cryptography is to be treated in Chapter 12.

The way a pseudorandom bit generator works is that it turns a short ran-
dom string called the “seed” into a longer pseudorandom string. We require
that it works in polynomial time. The resulting string has to “look” random:

153

154 7. Pseudorandom numbers

and the important fact is that this can be defined exactly. Roughly speaking,
there should be no polynomial time algorithm that distinguishes it from a
truly random sequence. Another feature, often easier to verify, is that no
algorithm can predict any of its bits from the previous bits. We prove the
equivalence of these two conditions.

But how do we design such a generator? Various ad hoc methods that
produce random-looking sequences (like taking the bits in the binary rep-
resentation of a root of a given equation) turn out to produce strings that
do not pass the strict criteria we impose. A general method to obtain such
sequences is based on one-way functions: functions that are easy to evaluate
but difficult to invert. While the existence of such functions is not proved (it
would imply that P is different from NP), there are several candidates, that
are secure at least against current techniques.

7.1 Classical methods

There are several classical methods that generate a “random-looking” se-
quence of bits. None of these meets the strict standards to be formulated
in the next section; but due to their simplicity and efficiency, they (espe-
cially linear congruential generators, example 7.1.2 below) can be used well
in practice. There is a large amount of practical information about the best
choice of the parameters; we don’t go into this here, but refer to Volume 2 of
Knuth’s book.

Example 7.1.1. Shift registers are defined as follows. Let f : {0, 1}n →
{0, 1} be a function that is easy to compute. Starting with a seed of n bits
a0, a1, . . . , an−1, we compute bits an, an+1, an+2, . . . recursively, by

ak = f(ak−1, ak−2, . . . , ak−n).

The name shift register comes from the fact that we only need to store
n+1 bits: after storing f(a0, . . . , an−1) in an, we don’t need a0 any more, and
we can shift a1 to a0, a2 to a1, etc. The most important special case is when
f is a linear function over the 2-element field, and we’ll restrict ourselves to
this case.

Looking at particular instances, the bits generated by a linear shift register
look random, at least for a while. Of course, the sequence a0.a1, . . . will
eventually have some n-tuple repeated, and then it will be periodic from
then on; but this need not happen sooner than a2n , and indeed one can
select the (linear) function f so that the period of the sequence is as large
as 2n.

7.1. Classical methods 155

The problem is that the sequence has more hidden structure than just
periodicity. Indeed, let

f(x0, . . . , xn−1) = b0x0 + b1x1 + . . . bn−1xn−1

(where bi ∈ {0, 1}). Assume that we do not know the coefficients b0, . . . , bn−1,
but observe the first n bits an, . . . , a2n−1 of the output sequence. Then we
have the following system of linear equations to determine the bi:

b0a0 + b1a1 + . . . bn−1an−1 = an

b0a1 + b1a2 + . . . bn−1an = an+1

...
b0an−1 + b1an + . . . bn−1a2n−2 = a2n−1

Here are n equations to determine the n unknowns (the equations are over
the 2-element field). Once we have the bi, we can predict all the remaining
elements of the sequence a2n, a2n+1, . . .

It may happen, of course, that this system is not uniquely solvable, because
the equations are dependent. For example, we might start with the seed
00 . . . 0, in which case the equations are meaningless. But it can be shown
that for a random choice of the seed, the equations determine the coefficients
bi with positive probability. So after seeing the first 2n elements of the
sequence, the rest “does not look random” for an observer who is willing to
perform a relatively simple (polynomial time) computation.

Example 7.1.2. The most important pseudorandom number generators in
practice are linear congruential generators. Such a generator is given by three
parameters a, b and m, which are positive integers. Starting with a seed X0,
which is an integer in the range 0 ≤ X0 ≤ m − 1, the generator recursively
computes integers X1, X2, . . . by

Xi = aXi−1 + b (mod m).

One might use all the Xi or extract, say, the middle bit of each, and output
this sequence.

It turns out that the output of these generators can also be predicted by a
polynomial time computation, after observing a polynomial number of output
bits. The algorithms to do so are much more involved, however, and due to
their fastness and simplicity, linear congruential generators can be used for
most practical applications.

Example 7.1.3. As a third example, let us look at the binary expansion of,
say,

√
5: √

5 = 10.001111000110111 . . .

156 7. Pseudorandom numbers

This sequence looks rather random. Of course, we cannot use the same
number all the time; but we can pick, say, an n-bit integer a as our “seed”,
and output the bits of

√
a − ⌊√a⌋. Unfortunately, this method turns out

to be “breakable” by rather advanced (but polynomial time) methods from
algorithmic number theory.

7.2 The notion of a pseudorandom number

generator

In general, a pseudorandom bit generator transforms a short, truly random
sequence s (the “seed”) into a longer sequence g(s) that still “looks” random.
The success of using g(s) in place of a random sequence depends on how
severely the randomness of g(s) is tested by the application. If the appli-
cation has the ability to test all possible seeds that might have generated
g(s) then it finds the true seed and not much randomness remains. For this,
however, the application may have to run too long. We would like to call g
a pseudorandom bit generator if no applications running only in polynomial
time can distinguish g(s) from truly random strings.

To make the definition precise, we need some preparation. We say that a
function f : Z+ → R is negligible, if nkf(n) → 0 as n→ ∞ for each fixed k.
In other words, f tends to 0 faster than the reciprocal of any polynomial. It
will be convenient to denote this (analogously to the “big-O” notation), by

f(n) = NEGL(n).

Note that a polynomial multiple of a negligible function is still negligible;
thus

nrNEGL(n) = NEGL(n)

for each fixed r.
Consider a polynomial time computable function G : {0, 1}∗ → {0, 1}∗,

where we assume that the length |G(x)| depends only on the length |x| of
x, and |x| < |G(x)| < c|x|c for some constant c. (So G stretches string but
not too much.) We call such a function a generator. Let A be a randomized
polynomial time algorithm (Turing machine) that accepts any 0-1 string x
as input and computes a bit A(x) from it. (We will interpret A(x) = 0 as
“not random”, and A(x) = 1 as “random”.) Fix an n ≥ 1. Let x be chosen
uniformly from {0, 1}n and let y be chosen uniformly from {0, 1}N , where
N = |G(x)|. We flip a coin, and depending on its result, we either feed G(x)
or y to A. We say that A is successful if either G(x) was fed to A and it
output 0 or y was fed and the output is 1.

The generator G is called a (safe) random number generator if for every
randomized polynomial time algorithm A that takes a 0-1 string x as input

7.2. The notion of a pseudorandom number generator 157

and computes a bit A(x) from it, the probability that A is successful is at
most 1/2 + NEGL(n).

This definition says that G(x) passes every “reasonable” test (any test
computable in randomized polynomial time) in the sense that the probability
that such a test recognizes that G(x) is not truly random is only negligibly
larger than 1/2 (which can of course be achieved by guessing randomly). The
probability in (b) is taken over the random choice of x and y, over the coin
flip determining which one is fed to A, and over the internal coin flips of A.

This requirement is so strong that it is unknown whether safe random
number generators exist at all (if they do, then P 6= NP; see the Exer-
cise 7.4.3). But we will see in the next section that they exist under some
complexity-theoretic assumptions.

Our definition of a safe random number generator is very general and the
condition is difficult to verify. The following theorem of Yao provides a way to
establish that a function is a safe random number generator that is often more
convenient. What it says is that every bit of G(x) is highly unpredictable
from the previous bits, as long as the prediction algorithm does not use too
much time.

We say that a generator g is unpredictable if the following holds. Let
n ≥ 1 and let x be a random string chosen uniformly from {0, 1}n. Let
g(x) = G1G2 . . . GN . Every Gi is a random bit, but these bits are in general
dependent. Let i be a random integer chosen uniformly from {1, . . . , N}.
Then for every randomized polynomial time algorithm B that accepts the
number n and a string x ∈ {0, 1}i as input, and computes a bit from it,

Pr
(

B(n;G1 . . . Gi) = Gi+1

)

=
1

2
+ NEGL(n). (7.2.1)

Informally: we try to use B to predict a bit of G1 . . . GN from the previous
bits. Then the probability that we succeed is only negligibly larger than 1/2
(again, we could achieve a success rate of 1/2 just by guessing randomly).

Theorem 7.2.1 (A. Yao). A generator g is a safe random number generator
if and only if it is unpredictable.

Before giving the proof, let us point out an interesting consequence of
this theorem. Obviously, if we reverse the output of a safe random number
generator, we get another safe random number generator—any algorithm
that could distinguish it from a truly random sequence could easily start
with reversing it. But this implies that if a generator is unpredictable, then
also this reverse is unpredictable—and there is no easy way to see this.

Proof. I. Suppose that g is not unpredictable. This means that there is a
randomized polynomial time algorithm B, a constant k > 0, and infinitely

158 7. Pseudorandom numbers

many values n, such that for an i chosen randomly from {1, . . . , N}, we have

Pr
(

B(n;G1 . . . Gi) = Gi+1

)

>
1

2
+

1

nk

(where x ∈ {0, 1}n is a uniformly chosen random string and g(x) = G1 . . . GN).
Using this, we can perform the following randomness test A on strings

y = y1 . . . yN : Choose a random i ∈ {1, . . . , N}. If B(n; y1 . . . yi) = yi+1,
then declare y “non-random”, else declare it “random”.

Let us argue that this test works. Suppose that we give A either a truly
random string R1 . . . RN or the string g(x) (each with probability 1/2). Then
the probability of success is

1

2
Pr

(

B(n;R1 . . . Ri) 6= Ri+1

)

+
1

2
Pr

(

B(n;G1 . . .Gi) = Gi+1

)

≥ 1

2
· 1
2
+

1

2

(

1

2
+

1

nk

)

=
1

2
+

1

2nk
.

Since this is non-negligibly larger than 1/2, the generator is not safe.

II. Assume that there exists a randomized polynomial time algorithm A
that, for infinitely many values of n, distinguishes the pseudorandom sequence
g(x) = G1 . . .GN from a truly random sequence r = R1 . . . RN with a success
probability that is at least 1/2 + n−k for some constant k > 0. We want to
show that in this case we can predict the i-th bit of G1 . . .GN for a random
i.

For a fixed choice of i, the success probability of A is

1

2
Pr(A(r) = 1) +

1

2
Pr(A(g(x)) = 0).

(Success means that A accepts r, but rejects g(x).) After a simple transfor-
mation this success probability is

1

2
+

1

2

(

Pr(A(r) = 1)− Pr(A(g(x)) = 1)
)

.

So it follows that

Pr(A(r) = 1)− Pr(A(g(x)) = 1) ≥ 2

nk
. (7.2.2)

The trick of the prediction algorithm B is to consider the mixed sequences

yi = G1 . . .GiRi+1 . . . RN

and subject them to the test A. We have y0 = r and yN = g(x). We also
need the sequences

zi = G1 . . .Gi−1GiRi+1 . . . RN where Gi denotes 1−Gi.

7.3. One-way functions 159

Suppose that we have seen G1, . . . , Gi−1. Let us flip a coin several times
to get independent random bits Ri, . . . , RN . We run algorithm A on yi−1,
and predict

B(n;G1 . . .Gi−1) =

{

Ri if A(yi−1) = 0,

Ri otherwise.

The probability that this prediction is successful is

Pr(Gi = Ri,A(yi−1) = 0) + Pr(Gi = Ri,A(yi−1) = 1)

= Pr(A(yi−1) = 0 | Gi = Ri) Pr(Gi = Ri)+

Pr(A(yi−1) = 1 | Gi = Ri) Pr(Gi = Ri)

=
1

2
Pr(A(yi) = 0 | Gi = Ri) +

1

2
Pr(A(zi) = 1 | Gi = Ri)

=
1

2
Pr(A(yi) = 0) +

1

2
Pr(A(zi) = 1),

since if Gi = Ri, then yi−1 = yi, while if Gi = Ri, then yi−1 = zi, and the
events A(yi) = 0 and A(zi) = 1 are independent of the event Gi = Ri. Let
us use also that

Pr(A(yi−1) = 0) =
1

2
Pr(A(yi) = 0) +

1

2
Pr(A(zi) = 0)

=
1

2
+

1

2
Pr(A(yi) = 0)− 1

2
Pr(A(zi) = 1).

Expressing the last term from this equation and substituting in the previous,
we get

Pr(B is successful) =
1

2
+ Pr(A(yi−1) = 1)− Pr(A(yi) = 1).

This is valid for every fixed i. Choosing i at random, we have to average
the right-hand sides, and get

Pr(B is successful)=
1

2
+

1

N

N
∑

i=1

(

Pr(A(yi−1) = 1)− Pr(A(yi) = 1)
)

=
1

2
+

1

N

(

Pr(A(y0)=1)−Pr(A(yN) = 1)
)

>
1

2
+

1

nkN
,

which is non-negligibly larger than 1/2.

So we have defined in an exact way what a pseudorandom number genera-
tor is, and have proved some basic properties. But do such generators exist?
It turns out that such generators can be constructed using some (unproved)
complexity-theoretic assumptions (which are nevertheless rather plausible).
This complexity-theoretic background is discussed in the next section.

160 7. Pseudorandom numbers

7.3 One-way functions

A one-way function is a function that is “easy to compute but difficult to
invert”. The exact definition can be given as follows.

Definition 7.3.1. A function f : {0, 1}∗ → {0, 1}∗ is called a one-way
function if

• there is a constant c ≥ 1 such that |x|1/c < |f(x)| < |x|c;
• f(x) is polynomial time computable;

• for every randomized polynomial time algorithm A that computes 0−1
strings from 0 − 1 strings, and for a string y randomly and uniformly
chosen from {0, 1}n,

Pr
(

f(A(f(y))) = f(y)
)

= NEG(n). (7.3.1)

The third condition means that if we pick a random string y of length n,
compute f(y), and then try to use A to compute a pre-image of f(y), the
probability that we succeed is negligible. Note that we don’t assume that f
is invertible, so we cannot simply write A(f(y)) = y.

But why don’t we write simply

Pr
(

f(A(z)) = z
)

= NEG(n) (7.3.2)

for a uniformly chosen z? The point is that since f may not be onto, it
could be the case that most strings z are not in the range of f . Then the
above probability would be small, even if in the cases when z is in the range,
a pre-image could always be easily computed. Thus (7.3.1) concentrates on
the cases when a pre-image exists, and stipulates that even these are hard.

A one-way permutation is a one-way function that is one-to-one and sat-
isfies |f(x)| = |x| for every x. It is clear that under this assumption, (7.3.2)
is equivalent to (7.3.1).

The main conclusion of this section is that, informally, “safe random num-
ber generators are equivalent to one-way functions”. In one direction, the
connection is easy to state and relatively easy to prove.

Theorem 7.3.1. Let g be a safe random number generator, and assume that
N = |g(x)| ≥ 2n where n = |x|. Then g is one-way.

Proof. Suppose that g is not one-way, then there exists a constant k > 0, a
randomized polynomial time algorithm A, and infinitely many values n such
that for a string y randomly and uniformly chosen from {0, 1}n,

Pr
(

g(A(g(y))) = g(y)
)

>
1

nk
.

7.3. One-way functions 161

Now consider the following randomness test B: we declare a string z ∈ {0, 1}N
“non-random” if g(A(z)) = z, and “random” otherwise. If we give B either a
truly random string r = R1 . . . RN or g(x) (each with probability 1/2), the
probability of success is

1

2
Pr

(

g(A(r)) 6= r
)

+
1

2
Pr

(

g(A(g(x))) = g(x)
)

The first term is very close to 1/2; indeed, the total number of strings in the
range of g is 2n, so the probability that r is one of these of 2n−N < 2−n (and
of course even if r is in the range of g, it may not be equal to g(A(r)), which
would help us but we don’t have to use it). The second term is at least 1/nk

by assumption. Thus the probability of success is at least

1

2

(

1− 1

2n

)

+
1

2

1

nk
>

1

2
+

1

4nk
,

which is non-negligibly larger than 1/2.

In the reverse direction we describe how to use a one-way permutation f
to construct a safe random number generator. (This construction is due to
Goldreich and Levin.) For two 0-1 strings u = u1 . . . un and v = v1 . . . vn,
define u · v = u1v1 ⊕ · · · ⊕ unvn.

We describe a random number generator. We start with a function f :
{0, 1}n → {0, 1}n. The seed of the generator is a pair (x, p) of random
sequences x = (x1, . . . , xn) and p = (p1, . . . , pn) (so the seed consists of 2n
bits), and we stretch this to a pseudorandom sequence of length N as follows.
Compute the strings

yt = f t(x)

for t = 1, . . . , N (here f t is the function f iterated t times), and let

Gt = p · yt, G(x, p) = G1 . . . GN .

Theorem 7.3.2. If f is a one-way permutation, then g is a safe random
number generator.

Proof. Using Theorem 7.2.1, and the remark after it, it suffices to show that
for every 1 ≤ i ≤ N , and for every randomized polynomial time algorithm B
computing a bit from GN . . .Gi+1, the probability that this bit is Gi is only
negligibly larger than 1/2. We can be generous and give the algorithm not
only these bits, but all the strings f t(x) for t ≥ i + 1 and also the string p
(from which GN . . .Gi+1 is easily computed). But then, we do not have to
give f i+2(x) . . . , fN(x); these are easily computed from f i+1(x).

Since f is a permutation of {0, 1}n, the vector f t(x) is also uniformly
distributed over {0, 1}n for every t. We consider the two special vectors

162 7. Pseudorandom numbers

y = f i(x) and z = f i+1(x) = f(y). From the assumption that f is one-
way, we know that no polynomial time algorithm can compute y from z with
non-negligible success probability.

Thus the algorithm B gets z = f i+1(x) and p, and guesses Gi = p ·f−1(z).
We denote this guess by B(p, z) or simply by B(p) (the dependence on z will
not be essential). We show that any polynomial time algorithm that can do
this with non-negligible success probability over 1/2 can be used to compute
y = f−1(z) with non-negligible success probability.

To warm up, let us assume that we have a polynomial time algorithm B
that always gets p·y right. Then it is easy to compute y: its i-th bit is exactly
yi = ei · y = B(ei), where ei = 0i−110n−i (the string with exactly one 1 in
the i-th position).

Unfortunately, we face a more difficult task: we can’t be sure that B
computes p · y correctly; all we know is that it computes a guess of this bit
that is correct a little more than half of the time (when we average over p, z
and the coin-flips that B may use). In particular, there is no guarantee that
the algorithm gives the right result for the very special choice p = ei.

The next idea is to use that

yi = ei · y = (p⊕ ei) · y ⊕ p · y

for any p. This suggests that we can try to use

B(p⊕ ei)⊕ B(p)

as our guess for yi. Choosing p at random here (uniformly over {0, 1}n),
we know that that we have a little, but non-negligible chance over 1/2 to
get p · y right; and since along with p, the vector p ⊕ ei is also uniformly
distributed over {0, 1}n, the same holds for the first term on the right-hand
side. Unfortunately, this implies only a very bad bound on the chance of
getting both of them right.

The main trick is to consider the values

g(p) = B(p⊕ ei)⊕ p · y. (7.3.3)

If for a p, B(p⊕ ei) guesses right, then this bit is yi; if it guesses wrong, then
it is ¬yi. Since on the average, B guesses more often right than wrong, we
get that on the average, the number of vectors v for which this is yi is at
least (1 + n−c) times larger than the number of terms for which it is ¬yi. So
it suffices to determine what is the majority of the bits g(p).

There are two troubles with this approach: first, we cannot evaluate g(p),
since in (7.3.3), y is unknown! Second, it would take too long to consider all
the values g(p) to determine whether 0 or 1 is the majority.

Even though the first problem seems to kill the whole approach, we start
with addressing the second, and – surprisingly – this will also suggest a way
to treat the first one.

7.3. One-way functions 163

We can try to determine yi by sampling: choose randomly and indepen-
dently a sufficiently large number of vectors p1, . . . , pk, and output the ma-
jority of g(p1), . . . , g(pk) as the guess for yi. Probability theory (the Law of
Large Numbers) tells us that the majority of the samples will be the same as
the majority of all values, with large probability.

The exact computation is standard probability theory, but we go through
it for later reference. Suppose (say) that xi = 0, so that the majority of g(p),
over all vectors p, is 0, and in fact the number of vectors p with g(p) = 1
is M ≤ (1/2 − n−c)2n. In the sample, we expect to see g(pj) = 1 about
kM2−n ≤ (1/2− n−c)k times. If sampling gives the wrong conclusion, then

k
∑

j=1

g(pj) ≥
k

2
,

and hence

k
∑

j=1

(g(pj)−M2−n)

2

≥ n−2ck2. (7.3.4)

Set Zj = g(pj)−M2−n, then we have E(Zj) = 0, E(ZjZl) = E(Zi)E(Zl) = 0
if j 6= l (since Zi and Zj are independent) and E(Z2

j) =M2−n−M22−2n < 1.
From this it is easy to compute the expectation of the left-hand side of (7.3.4):

E

∑

j

Zj

2

=

∑

j

E(Z2
j)− 2

∑

1≤j<l≤n

E(ZjZl) < k.

Thus the probability that (7.3.4) occurs is, by Markov’s inequality, less than
k/(n−2ck2) = n2c/k.

An important point to make is that to reach this conclusion we don’t need
independent samples: it suffices to assume that the vectors p1, . . . , pk are
pairwise independent. This will be significant, because to generate pairwise
independent samples, we need “less randomness”. In fact, let k = 2r − 1, and
pick only r vectors p1, . . . , pr uniformly and independently from {0, 1}n, let
pr+1, . . . , pk be all non-trivial linear combinations of them over GF(2) (say
pr+1 = p1 ⊕ p2, pr+2 = p1 ⊕ p2 ⊕ p3 etc.; it does not matter in which order
we go through these linear combinations). Then it is easy to check that the
vectors p1, . . . , pk are pairwise independent, and hence can be used as sample
vectors.

It may be nice to save on coin flips, but this way of generating p1, . . . , pk
has a further, much more substantial advantage: it provides a way out from
the trouble that we don’t know y in (7.3.3). Indeed, only need to know the
values p1 ·y, . . . , pk ·y; and for this, it suffices to know the values p1 ·y, . . . , pr ·y
(since then we have pr+1 · y = p1 · y ⊕ p2 · y etc.).

164 7. Pseudorandom numbers

So we need only r bits of information about y; this is much less than n,
but how are we going to get it? The answer is, that we don’t. We just try
all possible r-tuples of 0 and 1. This is only 2j = k + 1 = O(n2c) cases to
consider. For each such trial, we try to reconstruct y as described above.
We’ll know when we succeed, since then we find f(y) = z, and we are done.
And this happens with non-negligible probability.

7.4 Candidates for one-way functions

Number theory provides several candidates of one-way functions. The length
of inputs and outputs will not be exactly n, only polynomial in n.

Problem 7.4.1 (The factoring problem). Let x represent a pair of primes
of length n (say, along with a proof of their primality). Let f(n, x) be their
product. Many special cases of this problem are solvable in polynomial time
but still, a large fraction of the instances remains difficult.

Problem 7.4.2 (The discrete logarithm problem). Given a prime number
p, a primitive root g for p and a positive integer i < p, we output p, g and
y = gi mod p. The inversion problem for this is called the discrete logarithm
problem since given p, g, y, what we are looking for is i which is also known
as the index, or discrete logarithm, of y with respect to p.

Problem 7.4.3 (The discrete square root problem). Given positive integers
m and x < m, the function outputs m and y = x2 mod m. The inversion
problem is to find a number x with x2 ≡ y (mod m). This is solvable in
polynomial time by a probabilistic algorithm if m is a prime but is considered
difficult in the general case.

7.4.1 Discrete square roots

In this section we discuss a number theoretic algorithm to extract square
roots.

We call the integers 0, 1, . . . , p − 1 residues (modulo p). Let p be an odd
prime. We say that y is a square root of x (modulo p), if

y2 ≡ x (mod p).

If x has a square root then it is called a quadratic residue.
Obviously, 0 has only one square root modulo p: if y2 ≡ 0 (mod p), then

p|y2, and since p is a prime, this implies that p|y. For every other residue
x, if y is a square root of x, then so is p − y = −y (mod p). There are no
further square roots: indeed, if z2 ≡ x for some residue z, then p|y2 − z2 =

7.4. Candidates for one-way functions 165

(y − z)(y + z) and so either p|y − z or p|y + z. Thus z ≡ y or z ≡ −y as
claimed.

This implies that not every integer has a square root modulo p: squaring
maps the non-zero residues onto a subset of size (p − 1)/2, and the other
(p− 1)/2 have no square root.

The following lemma provides an easy way to decide if a residue has a
square root.

Lemma 7.4.1. A residue x has a square root if and only if

x(p−1)/2 ≡ 1 (mod p). (7.4.1)

Proof. The “only if” part is easy: if x has a square root y, then

x(p−1)/2 ≡ yp−1 ≡ 1 (mod p)

by Fermat’s Little Theorem. Conversely, the polynomial x(p−1)/2 − 1 has
degree (p− 1)/2, and hence it has at most (p− 1)/2 roots modulo p (this can
be proved just like the well-know theorem that a polynomial of degree n has
at most n real roots). Since all quadratic residues are roots of x(p−1)/2 − 1,
none of the quadratic non-residues can be.

But how to find a square root? For some primes, this is easy.

Lemma 7.4.2. Assume that p ≡ 3 (mod 4). Then for every quadratic
residue x, x(p+1)/4 is a square root of x.

Proof.
(

x(p+1)/4
)2

= x(p+1)/2 = x · x(p−1)/2 ≡ x (mod p).

The case when p ≡ 1 (mod 4) is more difficult, and the only known poly-
nomial time algorithms use randomization. In fact, randomization is only
needed in the following auxiliary algorithm:

Lemma 7.4.3. Let p be an odd prime. Then we can find a quadratic non-
residue modulo p in randomized polynomial time.

This can be done by selecting a random residue z 6= 0, and then testing
(using Lemma 7.4.1 whether it is a quadratic residue. If not, we try another z.
Since the chance of hitting one is 1/2, we find one in an average of two trials.

Remark. One could, of course, try to avoid randomization by testing the
residues 2, 3, 5, 7, . . . to see if they have a square root. Sooner or later we
will find a quadratic non-residue. However, it is not known whether the
smallest quadratic non-residue will be found in polynomial time this way. It
is conjectured that one never has to try more than O(log2 p) numbers this
way.

166 7. Pseudorandom numbers

Now let us return to the problem of finding the square root of a residue
x, in the case when p is a prime satisfying p ≡ 1 (mod 4). We can write
p− 1 = 2kq, where q is odd and k ≥ 2.

We start with finding a quadratic non-residue z. The trick is to find an
even power z2t such that xqz2t ≡ 1 (mod p). Then we can take y = x(q+1)/2zt

(mod p). Indeed,
y2 ≡ xq+1z2t ≡ x (mod p).

To construct such a power of z, we construct for all j ≤ k − 1 an integer
tj > 0 such that

x2
jqz2

j+1tj ≡ 1 (mod p). (7.4.2)

For j = 0, this is just what we need. For j = k − 1, we can take tk−1 = q:

x2
k−1qz2

kq = x(p−1)/2zp−1 ≡ 1 (mod p),

since x is a quadratic residue and zp−1 ≡ 1 (mod p) by Fermat’s “Little”
theorem. This suggests that we construct the number tj “backwards” for
j = k − 2, k − 3, . . .

Suppose that we have tj , j > 0, and we want to construct tj−1. We know
that

p
∣

∣

∣x2
jqz2

j+1tj − 1 =
(

x2
j−1qz2

jtj − 1
)(

x2
j−1qz2

jtj + 1
)

We test which of the two factors is a multiple of p. If it is the first, we can
simply take tj−1 = tj . So suppose that it is the second. Now take

tj−1 = tj + 2k−j−1q.

Then x2
j−1qz2

jtj−1 = x2
j−1qz2

jtj+2k−1q = x2
j−1qz2

jtjz(p−1)/2 ≡ (−1)(−1)= 1,
since z is a quadratic non-residue.

This completes the description of the algorithm.

Exercise 7.4.1. Show that squaring an integer is not a safe random number
generator.

Exercise 7.4.2. For a string x, let rev(x) denote the reverse string. Show
that if g(s) is a safe random number generator, then so is rev(g(s)).

Exercise 7.4.3. If P=NP then no one-way function exists.

Exercise 7.4.4. Somebody proposes the following random number genera-
tor: it takes an integer x with n bits as the seed, and outputs ⌊x3/2n⌋. Show
that this random number generator is not safe.

Chapter 8

Decision trees

The logical framework of many algorithms can be described by a tree: we
start from the root and in every internal node, the result of a certain “test”
determines which way we continue. E.g., most sorting algorithms make com-
parisons between certain pairs of elements and continue the work according
to the result of the comparison. We assume that the tests performed in such
computations contain all the necessary information about the input, i.e.,
when we arrive at a leaf of the tree, all that is left is to read off the output
from the leaf. The complexity of the tree gives some information about the
complexity of the algorithm; for example, the depth of the tree (the number
of edges in the longest path leaving the root) tells us how many tests must
be performed in the worst case during the computation. We can describe, of
course, every algorithm by a trivial tree of depth 1 (the test performed in the
root is the computation of the end result). This algorithmic scheme makes
sense only if we restrict the kind of tests allowed in the nodes.

We will see that decision trees not only give a graphical representation
of the structure of some algorithms but are also suitable for proving lower
bounds on their depth. Such a lower bound can be interpreted as saying that
the problem cannot be solved (for the worst input) in fewer steps than some
given number, if we assume that information on the input is available only by
the permissible tests (for example, in sorting we can only compare the given
numbers with each other and cannot perform e.g., arithmetic operations on
them).

167

168 8. Decision trees

8.1 Algorithms using decision trees

Consider some simple examples.

Binary search

Perhaps the simplest situation in which decision trees are used is binary
search. We want to compute an integer a, about which at the beginning we
only konw that it lies, say, in the interval [1, N]. We have an algorithm that,
given any integer m, 1 ≤ m ≤ N , can decide whether a ≤ m is true. Then
by calling this algorithm ⌈logN⌉ times, we can determine a. We have used
this method when we showed that factoring an integer can be reduced to the
problem of finding a bounded divisor.

We can describe this algorithm by a rooted binary tree: every node will
correspond to an interval [u, v] ⊆ [1, N]. The root corresponds to the interval
[1, N], and each node corresponds to the interval of integers that are still
possible values for a if we arrive at the node. The leaves correspond to
one-element intervals, i.e., the possible values of a. For an internal node
corresponding to the interval [u, v], we select w = ⌊(u + v)/2⌋ and test if
a ≤ w. Depending on the outcome of this test, we proceed to one of the
children of the node, which correspond to the intervals [u,w] and [w + 1, v].

a) Finding a false coin with a one-armed scale

We are given n coins looking identical from the outside. We know that each
must weigh 1 unit; but we also know that there is a false one among them
that is lighter than the rest. We have a one-armed scale; we can measure with
it the weight of an arbitrary subset of the coins. How many measurements
are enough to decide which coin is false?

The solution is simple: with one measurement, we can decide about an
arbitrary set of coins whether the false one is among them. If we put ⌈n/2⌉
coins on the scale, then after one measurement, we have to find the false coin
only among at most ⌈n/2⌉ ones. This recursion ends in ⌈log2 n⌉ steps.

We can characterize the algorithm by a rooted binary tree. Every vertex
v corresponds to a set Xv of coins; arriving into this vertex we already know
that the false coin is to be found in this set. (The root corresponds to the
original set, and the leaves to the 1-element sets.) For every internal node v,
we divide the set Xv into two parts, with ⌈|Xv|/2⌉ and ⌊|Xv|/2⌋ elements,
respectively. These correspond to the children of v. Measuring the first one
we learn which one contains the false coin.

b) Finding a false coin with a two-armed scale

Again, we are given n identically looking coins. We know that there is a
false one among them that is lighter than the rest. This time we have a

8.1. Algorithms using decision trees 169

two-armed scale but without weights. On this, we can find out which one of
two (disjoint) sets of coins is lighter, or whether they are equal. How many
measurements suffice to decide which coin is false?

Here is a solution. One measurement consists of putting the same number
of coins into each pan. If one side is lighter then the false coin is in that pan.
If the two sides have equal weight then the false coin is among the ones left
out. It is most practical to put ⌈n/3⌉ coins into both pans; then after one
measurement, the false coin must be found only among at most ⌈n/3⌉ coins.
This recursion terminates in ⌈log3 n⌉ steps.

Since one measurement has 3 possible outcomes, the algorithm can be
characterized by a rooted tree in which each internal node has 3 children.
Every node v corresponds to a set Xv of coins; arriving into this node we
already know that the false coin is in this set. (As above, the root corresponds
to the original set and the leaves to the one-element sets.) For each internal
node v, we divide the set Xv into three parts, with ⌈|Xv|/3⌉, ⌈|Xv|/3⌉ and
|Xv|−2⌈|Xv|/3⌉ elements. These correspond to the children of v. Comparing
the two first ones we can find out which one of the three sets contains the
false coin.

Exercise 8.1.1. Prove that fewer measurements do not suffice in either
problem a) or b).

c) Sorting

Given are n elements that are ordered in some way (unknown to us). We know
a procedure to decide the order of two elements; this is called a comparison
and considered an elementary step. We would like to determine the complete
ordering using as few comparisons as possible. Many algorithms are know
for this basic problem of data processing; we treat this question only to the
depth necessary for the illustration of decision trees.

Obviously,
(

n
2

)

comparisons are enough: with these, we can learn about
every pair of elements, which one in the pair is greater, and this determines
the complete order. These comparisons are not, however, independent: often,
we can infer the order of certain pairs using transitivity. Indeed, it is enough
to make

∑n
k=1 ⌈log k⌉ ∼ n logn comparisons. Here is the simplest way to

see this: suppose that we already determined the ordering of the first n− 1
elements. Then already only the n-th element must be “inserted”, which can
obviously be done with ⌈logn⌉ comparisons.

This algorithm, as well as any other sorting algorithm working with com-
parisons, can be represented by a binary tree. The root corresponds to the
first comparison; depending on its result, the algorithm branches into one of
the children of the root. Here, we make another comparison, etc. Every leaf
corresponds to a complete ordering.

170 8. Decision trees

p
n

p
j

p
j

a

b

Figure 8.1.1: A simple convex hull algorithm

Remark. In the above sorting algorithm, we only counted the comparisons.
For a real implementation, one should also take into account the other oper-
ations, e.g., the movement of data, etc. From this point of view, the above
algorithm is not good since every insertion may require the movement of all
elements placed earlier and this may cause Ω(n2) extra steps. There exist,
however, sorting algorithms requiring altogether only O(n logn) steps.

d) Convex hull

The determination of the convex hull of n planar points is as basic among
the geometrical algorithms as sorting for data processing. The points are
given by their coordinates: p1 = (x1, y1), . . . , pn = (xn, yn). We assume, for
simplicity, that the points are in general position, i.e., no 3 of them is on
one straight line. We want to determine those indices i0, . . . , ik−1, ik = i0 for
which pi0 , . . . , pik−1

, pik are the vertices of the convex hull of the given point
set, in this order along the convex hull (starting anticlockwise, say, from the
point with the smallest abscissa).

The idea of “insertion” gives a simple algorithm here, too. Sort the ele-
ments by their xi coordinates; this can be done in time O(n log n). Suppose
that p1, . . . , pn are already indexed in this order. Delete the point pn and
determine the convex hull of the points p1, . . . , pn−1: let this be the sequence
of points pj0 , . . . , pjm−1 , pjm where j0 = jm = 1.

Now, the addition of pn consists of deleting the arc of the polygon pj0 , . . .,
pjm “visible” from pn and replacing it with the point pn. Let us determine the
first and last elements of the sequence pj0 , . . . , pjm visible from pn, let these
be pja and pjb . Then the convex hull sought for is pj0 , . . . , pja , pn, pjb , pjm
(Figure 8.1.1).

8.1. Algorithms using decision trees 171

How to determine whether some vertex pjs is visible from pn? The point
pn−1 is evidently among the vertices of the polygon and is visible from pn;
let jt = n − 1. If s < t then, obviously, pjs is visible from pn if and only if
pn is below the line pjspjs+1 . Similarly, if s > t then pjs is visible from pn if
and only if pn is above the line pjspjs−1 . In this way, it can be decided about
every pjs in O(1) steps whether it is visible from pn.

Using this, we can determine a and b in O(log n) steps and we can per-
form the “insertion” of the point pn. This recursion gives an algorithm with
O(n log n) steps.

It is worth separating here the steps in which we do computations with
the coordinates of the points, from the other steps (of combinatorial charac-
ter). We do not know namely, how large are the coordinates of the points,
whether multiple-precision computation is needed, etc. Analysing the de-
scribed algorithm, we can see that the coordinates needed to be taken into
account only in two ways: at the sorting, when we had to make comparisons
among the abscissas, and at deciding whether point pn was above or below
the straight line determined by the points pi and pj . The last one can be also
formulated by saying that we must determine the orientation of the triangle
pipjpk. This can be done in several ways using the tools of analytic geometry
without division.

The above algorithm can again be described by a binary decision tree:
each of its nodes corresponds either to the comparison of the abscissas of two
given points or to the determination of the orientation of a triangle given by
three points. The algorithm gives a tree of depth O(n log n). (Many other
algorithms looking for the convex hull lead to a decision tree of similar depth.)

Exercise 8.1.2. Show that the problem of sorting n real numbers can be
reduced in a linear number of steps to the problem of determining the convex
hull of n planar points.

Exercise 8.1.3. Show that the determination of the convex hull of the points
p1, . . . , pn can be performed in O(n) steps provided that the points are already
sorted by their x coordinates.

To formalize the notion of a decision tree let us be given the set A of
possible inputs, the set B of possible outputs and a set Φ of functions defined
on A with values in {1, . . . , d}, the test-functions. A decision tree is a
rooted tree whose internal nodes (including the root) have d children (the
tree is d-regular), its leaves are labeled with the elements of B, the other
nodes with the functions of Φ. We assume that for every vertex, the edges
to its children are numbered in some order.

Every decision tree determines a function f : A → B. For any a ∈ A,
starting from the root, we walk down to a leaf as follows. If we are in an
internal node v then we compute the test function assigned to v at the place
a; if its value is i then we step further to the i-th child of node v. In this
way, we arrive at a leaf w; the value of f(a) is the label of w.

172 8. Decision trees

2

x3 x3

1 x4 x1 0

1 0 1 0

x

1

1 1

1 1

0

0

00

0

Figure 8.1.2: A simple decision tree

The question is that for a given function f , what is the decision tree with
minimum depth computing it.

In the simplest case, we want to compute a Boolean function f(x1, . . . , xn)
and every test that can be made in the vertices of the decision tree is testing
the value of one of the variables. In this case, we call the decision tree simple.
Every simple decision tree is binary, the internal nodes are indexed with the
variables, the leaves with 0 and 1.

The decision tree corresponding to binary search over the interval [1, 2n]
can be considered as simple, if the variables are the bits of the number and we
regard the consecutive comparisons as asking for the next bit of the unknown
number a. The decision tree for sorting is not simple: there, the tests (com-
parisons) are not independent since the ordering is transitive. We denote
by D(f) the minimal depth of a simple decision tree computing a Boolean
function f .

Example 8.1.1. Consider the Boolean function

f(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4).

This is computed by the simple decision tree in Figure 8.1.2. This shows that
D(f) ≤ 3. It is easy to see that we cannot compute this funtion by a simple
decision tree of depth 2, and hence D(f) = 3.

Every decision tree can also be considered a two-person “twenty questions”-
like game. One player (Xavier) thinks of an element a ∈ A, and it is the task
of the other player (Yvette) to determine the value of f(a). For this, she
can pose questions to Xavier. Her questions cannot be, however, arbitrary,

8.2. Non-deterministic decision trees 173

she can only ask the value of some test function in Φ. How many questions
do suffice for her to compute the answer? Yvette’s strategy corresponds to a
decision tree, and Xavier plays optimally if with his answers, he drives Yvette
to the leaf farthest away from the root. (Xavier can “cheat, as long as he is
not caught”—i.e., he can change his mind about the element a ∈ A as long as
the new one still makes all his previous answers correct. In case of a simple
decision tree, Xavier has no such worry at all.)

8.2 Non-deterministic decision trees

The notion learned in Chapter 5, non-determinism, helps in other complex-
ity-theoretic investigations, too. In the decision-tree model, the same idea
can be formulated as follows (we will only consider the case of simple decision
trees). Let f : {0, 1}n → {0, 1} be the function to be computed. Two num-
bers characterize the non-deterministic decision-tree complexity (similarly to
having two complexity classes for non-deterministic polynomial time, namely
NP and co-NP). For every input x, let D(f, x) denote the minimum number
of those variables whose value already determines the value of f(x). Let

D0(f) = max{D(f, x) : f(x) = 0}, D1(f) = max{D(f, x) : f(x) = 1}.

In other words, D0(f) is the smallest number with the property that for
all inputs x with f(x) = 0, we can test D0(f) variables in such a way that
knowing these, the value of the function is already determined (it may depend
on x which variables we will test). The number D1(f) can be characterized
similarly. Obviously,

D(f) ≥ max{D0(f), D1(f)}.

It can be seen from the examples below that equality does not necessarily
hold here.

Example 8.2.1. Assign a Boolean variable xe to each edge e of the complete
graph Kn. Then every assignment corresponds to an n-point graph (we con-
nect with edges those pairs whose assigned value is 1). Let f be the Boolean
function with

(

n
2

)

variables whose value is 1 if in the graph corresponding to
the input, the degree of every node is at least one and 0 otherwise (i.e., if
there is an isolated point). Then D0(f) ≤ n− 1 since if there is an isolated
point in the graph it is enough to know about the n − 1 edges leaving it
that they are not in the graph. It is also easy to see that we cannot infer an
isolated point from the adjacency or nonadjacency of n− 2 pairs, and thus

D0(f) = n− 1.

174 8. Decision trees

Similarly, if there are no isolated points in a graph then this can be proved
by the existence of n − 1 edges (it is enough to know one edge leaving each
node and at least one of the edges even covers 2 nodes). If the input graph
is an (n− 1)-star then fewer than n− 1 edges are not enough. Therefore

D1(f) = n− 1.

Thus, whichever is the case, we can know the answer after n− 1 lucky ques-
tions. On the other hand, if we want to decide which one is the case then
we cannot know in advance which edges to ask; it can be shown that the
situation is as bad as it can be, namely

D(f) =

(

n

2

)

.

We return to the proof of this in the next section (exercise 8.3.3).

Example 8.2.2. Let now G be an arbitrary n-point graph an let us assign
a variable to each of its vertices. An assignment of the variables corresponds
to a subset of the vertices. Let the value of the function f be 0 if this set
is independent in the graph and 1 otherwise. This property can be simply
expressed by a Boolean formula:

f(x1, . . . , xn) =
∨

ij∈E(G)

(xi ∧ xj).

If the value of this Boolean function is 1 then this can be found out already
from testing 2 vertices, but of course not from testing a single point, i.e.

D1(f) = 2.

On the other hand, if after testing certain points we are sure that the set is
independent then the vertices that we did not ask must form an independent
set. Thus

D0(f) ≥ n− α

where α is the maximum number of independent points in the graph. It
can also be proved (see Theorem 8.3.6) that if n is a prime and a cyclic
permutation of the points of the graph maps the graph onto itself, and the
graph has some edges but is not complete, then

D(f) = n.

We see therefore that D(f) can be substantially larger than the maximum
of D0(f) and D1(f), moreover, it can be that D1(f) = 2 and D(f) = n.
However, the following beautiful relation holds:

8.2. Non-deterministic decision trees 175

Theorem 8.2.1. D(f) ≤ D0(f)D1(f) if f is non-constant.

Proof. We use induction over the number n of variables. If n = 1 then the
inequality is trivial. It is also trivial if f is constant, so from now on we
suppose f is not constant.

Let, say, f(0, . . . , 0) = 0; then k ≤ D0(f) variables can be chosen such that
fixing their values to 0, the function is 0 independently of the other variables.
We can assume that the first k variables have this property.

Next, consider the following decision algorithm. We ask the value of the
first k variables; let the obtained answers be a1, . . . , ak. Fixing these, we
obtain a Boolean function

g(xk+1, . . . , xn) = f(a1, . . . , ak, xk+1, . . . , xn).

Obviously, D0(g) ≤ D0(f) and D1(g) ≤ D1(f). We claim that the latter
inequality can be strengthened:

D1(g) ≤ D1(f)− 1.

Consider an input (ak+1, . . . , an) of g with g(ak+1, . . . , an)=1. (If g ≡ 0, then
the above inequality is trivially true, so we can suppose such (ak+1, . . . , an)
exist.) Together with the bits a1, . . . , ak, this gives an input of the Boolean
function f for which f(a1, . . . , an) = 1. According to the definition of the
quantity D1(f), one can choose m ≤ D1(f) variables, say, xi1 , . . . , xim of f
such that fixing them some values aij , the value of f becomes 1 independently
of the other variables. One of the first k variables must occur among these
m variables; otherwise, f(0, . . . , 0, ak+1, . . . , an) would have to be 0 (due to
the fixing of the first k variables) but would also have to be 1 (due to the
fixing of xi1 , . . . , xim), which is a contradiction. Thus, in the function g,
at the position ak+1, . . . , ak, only m − 1 variables must be fixed to obtain
the identically 1 function. From this, the claim follows. From the induction
hypothesis,

D(g) ≤ D0(g)D1(g) ≤ D0(f)(D1(f)− 1),

and hence

D(f) ≤ k +D(g) ≤ D0(f) +D(g) ≤ D0(f)D1(f).

In Example 8.2.2, we could define the function by a disjunctive 2-normal
form and then D1(f) = 2 follows. This is not an accidental coincidence.

Proposition 8.2.2. If f is expressible by a disjunctive k-normal form then
D1(f)≤k. If f is expressible by a conjunctive k-normal form then D0(f)≤k.
Proof. It is enough to prove the first assertion. Let (a1, . . . , an) be an in-
put for which the value of the function is 1. Then there is an elementary

176 8. Decision trees

conjunction in the disjunctive normal form whose value is 1. If we fix the
variables occurring in this conjunction then the value of the function will be
1 independently of the values of the other variables.

In fact, the reverse is also true.

Proposition 8.2.3. A non-constant Boolean function is expressible by a
disjunctive [resp. conjunctive] k-normal form if and only if D1(f) ≤ k [resp.
D0(f) ≤ k].

Proof. Let {xi1 , . . . , xim} be a subset of the variables minimal with respect
to containment, that can be fixed in such a way as to make the obtained
function is identically 1. (Such a subset is called a minterm.)

We will show that m ≤ k. Let us namely assign the value 1 to the variables
xi1 , . . . , xim and 0 to the others. According to the foregoing, the value of the
function is 1. By the definition of the quantity D1(f), we can fix in this
assignment k values in such a way as to make the function identically 1.
We can assume that we only fix 1’s, i.e., we only fix some of the variables
xi1 , . . . , xim . But then, due to the minimality of the set {xi1 , . . . , xim}, we
had to fix all of them, and hence m ≤ k.

Let us prepare for every minterm S the elementary conjunction ES =
∧

xi∈S xi and take the disjunction of these. We obtain a disjunctive k-normal
form this way. It is easy to check that this defines the function f .

8.3 Lower bounds on the depth of decision trees

We mentioned that decision trees as computation models have the merit that
non-trivial lower bounds can be given for their depth. First we mention,
however, a non-trivial lower bound also called information-theoretic es-
timate.

Lemma 8.3.1. If the range of f has t elements then the depth of every
decision tree of degree d computing f is at least logd t.

Proof. A d-regular rooted tree of depth h has at most dh leaves. Since every
element of the range of f must occur as a label of a leaf it follows that
t ≥ dh.

As an application, let us take an arbitrary sorting algorithm. The input of
this is a permutation a1, . . . , an of the elements 1, 2, . . . , n, its output is the
ordered sequence 1, 2, . . . , n, while the test functions compare two elements:

ϕij(a1, . . . , an) =

{

1 if ai < aj

0 otherwise.

8.3. Lower bounds on the depth of decision trees 177

Since there are n! possible outputs, the depth of any binary decision tree
computing the complete order is at least logn! ∼ n logn. The sorting algo-
rithm mentioned in the introduction makes at most ⌈logn⌉+ ⌈log(n− 1)⌉+
· · ·+ ⌈log 1⌉ ∼ n logn comparisons.

This bound is often very weak; if e.g., only a single bit must be computed
then it says nothing. Another simple trick for proving lower bounds is the
following observation.

Lemma 8.3.2. Assume that there is an input a ∈ A such that no matter
how we choose k test functions, say, ϕ1, . . . , ϕk, there is an a′ ∈ A for which
f(a′) 6= f(a) but ϕi(a

′) = ϕi(a) holds for all 1 ≤ i ≤ k. Then the depth of
every decision tree computing f is greater than k.

For application, let us see how many comparisons suffice to find the largest
one of n elements. In a championship by elimination n − 1 comparisons are
enough for this. Lemma 8.3.1 gives only logn for lower bound; but we can
apply Lemma 8.3.2 as follows. Let a = (a1, . . . , an) be an arbitrary permu-
tation, and consider k < n− 1 comparison tests. The pairs (i, j) for which ai
and aj will be compared form a graph G over the underlying set {1, . . . , n}.
Since it has fewer than n − 1 edges this graph falls into two disconnected
parts, G1 and G2. Without loss of generality, let G1 contain the maximal
element and let p denote its number of vertices. Let a′ = (a′1, . . . a

′
n) be the

permutation containing the numbers 1, . . . , p in the positions corresponding
to the vertices of G1 and the numbers p + 1, . . . , n in those corresponding
to the vertices of G2; the order of the numbers within both sets must be
the same as in the original permutation. Then the maximal element is in
different places in a and in a′ but the given k tests give the same result for
both permutations.

Exercise 8.3.1. Show that to pick the median of 2n+ 1 numbers,
(a) at least 2n comparisons are needed;
(b)* O(n) comparisons suffice.

In what follows we show estimates for the depth of some more special deci-
sion trees, applying, however, some more interesting methods. First we men-
tion a result of Best, Schrijver and van Emde-Boas, and Rivest and Vuillemin,
which gives a lower bound of unusual character for the depth of decision trees.

Theorem 8.3.3. Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function.
Let N denote the number of those substitutions making the value of the func-
tion “1” and let 2k be the largest power of 2 dividing N . Then the depth of
any simple decision tree computing f is at least n− k.

Proof. Consider an arbitrary simple decision tree of depth d that computes
the function f , and a leaf of this tree. Here, m ≤ d variables are fixed,

178 8. Decision trees

therefore there are at least 2n−m inputs leading to this leaf. All of these
correspond to the same function value, therefore the number of inputs leading
to this leaf and giving the function value “1” is either 0 or 2n−m. This number
is therefore divisible by 2n−d. Since this holds for all leaves, the number of
inputs giving the value “1” is divisible by 2n−d and hence k ≥ n− d.

With the suitable extension of the above argument we can prove the fol-
lowing theorem (details of the proof are left as an exercise to the reader).

Theorem 8.3.4. Given an n-variable Boolean function f , construct the fol-
lowing polynomial: Ψf (t) =

∑

f(x1, . . . , xn)t
x1+···+xn where the summation

extends to all (x1, . . . , xn) ∈ {0, 1}n. Prove that if f can be computed by a
simple decision tree of depth d, then Ψf (t) is divisible by (t+ 1)n−d.

We call a Boolean function f of n variables evasive if it cannot be com-
puted by a decision tree of length smaller than n. It follows from Theorem
8.3.3 that if a Boolean function has an odd number of substitutions making
it “1” then the function is evasive.

We obtain another important class of evasive functions by symmetry-
conditions. A Boolean function is called symmetric if every permutation
of its variables leaves its value unchanged. E.g., the functions x1 + · · ·+ xn,
x1∨· · ·∨xn and x1∧· · ·∧xn are symmetric. A Boolean function is symmetric
if and only if its value depends only on how many of its variables are 0 or 1.

Proposition 8.3.5. Every non-constant symmetric Boolean function is eva-
sive.

Proof. Let f : {0, 1}n → {0, 1} be the Boolean function in question. Since
f is not constant, there is a j with 1 ≤ j ≤ n such that if j − 1 variables
have value 1 then the function’s value is 0 but if j variables are 1 then the
function’s value is 1 (or the other way around).

Using this, we can propose the following strategy to Xavier. Xavier thinks
of a 0-1-sequence of length n and Yvette can ask the value of each of the xi.
Xavier answers 1 on the first j−1 questions and 0 on every following question.
Thus after n− 1 questions, Yvette cannot know whether the number of 1’s is
j − 1 or j, i.e., she cannot know the value of the function.

Symmetric Boolean functions are very special; the following class is sig-
nificantly more general. A Boolean function of n variables is called weakly
symmetric if for all pairs xi, xj of variables, there is a permutation of the
variables that takes xi into xj but does not change the value of the function.
e.g., the function

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ · · · ∨ (xn−1 ∧ xn) ∨ (xn ∧ x1)

8.3. Lower bounds on the depth of decision trees 179

is weakly symmetric but not symmetric. The question below (the so-called
generalized Aandera–Rosenberg–Karp conjecture) is open:

Conjecture 8.3.1. If a non-constant monotone Boolean function is weakly
symmetric then it is evasive.

We show that this conjecture is true in an important special case.

Theorem 8.3.6. If a non-constant monotone Boolean function is weakly
symmetric and the number of its variables is a prime number then it is eva-
sive.

Proof. Let p be the number of variables (emphasizing that this number is a
prime). We use the group-theoretic result that if a prime p divides the order
of a group, then the group has an element of order p. In our case, those
permutations of the variables that leave the value of the function invariant
form a group, and from the week symmetry it follows that the order of this
group is divisible by p. Thus the group has an element of order p. This
means that with a suitable labeling of the variables, the substitution x1 →
x2 → · · · → xp → x1 does not change the value of the function.

Now consider the number

M =
∑

f(x1, . . . , xp)(p− 1)x1+···+xp = Ψf (p− 1). (8.3.1)

It follows that in the definition of M , if in some term, not all the values
x1, . . . , xp are the same, then p identical terms can be made from it by cyclic
substitution. The contribution of such terms is therefore divisible by p. Since
the function is not constant and is monotone, it follows that f(0, . . . , 0) = 0
and f(1, . . . , 1) = 1, from which it can be seen that M gives remainder (−1)p

modulo p, which contadicts Theorem 8.3.4.

Important examples of weakly symmetric Boolean functions are any graph
properties. Consider an arbitrary property of graphs, e.g., planarity; we
only assume that if a graph has this property then every graph isomorphic to
it also has it. We can specify a graph with n points by fixing its vertices (let
these be 1, . . . , n), and for all pairs {i, j} ⊆ {1, . . . , n}, introduce a Boolean
variable xij with value 1 if i and j are connected and 0 if they are not. In this
way, the planarity of n-point graph can be considered a Boolean function with
(

n
2

)

variables. Now, this Boolean function is weakly symmetric: for every two
pairs, say, {i, j} and {u, v}, there is a permutation of the vertices taking i
into u and j into v. This permutation also induces a permutation on the
set of point pairs that takes the first pair into the second one and does not
change the planarity property.

A graph property is called trivial if either every graph has it or no one
has it. A graph property is monotone if whenever a graph has it each of its

180 8. Decision trees

subgraphs has it. For most graph properties that we investigate (connecivity,
the existence of a Hamiltonian circuit, the existence of complete matching,
colorability etc.) either the property itself or its negation is monotonic.

The Aandera–Rosenberg–Karp conjecture, in its original form, concerns
graph properties:

Conjecture 8.3.2. Every non-trivial monotonic graph property is evasive,
i.e., every decision tree that decides such a graph property and can only test
whether two nodes are connected, has depth

(

n
2

)

.

This conjecture is proved for a number of graph properties: for a general
property, what is known is only that the tree has depth Ω(n2) (Rivest and
Vuillemin) and that the theorem is true if the number of points is a prime
power (Kahn, Saks and Sturtevant). The analogous conjecture is also proved
for bipartite graphs (Yao).

Exercise 8.3.2. Prove that the connectedness of a graph is a evasive prop-
erty.

Exercise 8.3.3.
(a) Prove that if n is even then on n fixed points, the number of graphs

not containing isolated points is odd.
(b) If n is even then the graph property that in an n-point graph there is

no isolated point, is evasive.
(c)* This statement holds also for odd n.

Exercise 8.3.4. A tournament is a complete graph each of whose edges
is directed. Each tournament can be described by

(

n
2

)

bits saying how the
individual edges of the graph are directed. In this way, every property of
tournaments can be considered an

(

n
2

)

-variable Boolean function. Prove that
the tournament property that there is a 0-degree vertex is evasive.

Among the more complex decision trees, the algebraic decision trees
are important. In this case, the input is n real numbers x1, . . . , xn and every
test function is described by a polynomial; in the internal nodes, we can
go in three directions according to whether the value of the polynomial is
negative, 0 or positive (sometime, we distinguish only two of these and the
tree branches only in two). An example is provided for the use of such a
decision tree by sorting, where the input can be considered n real numbers
and the test functions are given by the polynomials xi − xj .

A less trivial example is the determination of the convex hull of n planar
points. Recall that the input here is 2n real numbers (the coordinates of the
points), and the test functions are represented either by the comparison of
two coordinates or by the determination of the orientation of a triangle. The

8.3. Lower bounds on the depth of decision trees 181

points (x1, y1), (x2, y2) and (x3, y3) form a triangle with positive orientation
if and only if

∣

∣

∣

∣

∣

∣

x1 y1 1
x2 y2 1
x3 y3 1

∣

∣

∣

∣

∣

∣

> 0.

This can be considered therefore the determination of the sign of a second-
degree polynomial. The algorithm described in Section 8.1 gives thus an
algebraic decision tree in which the test functions are given by polynomials
of degree at most two and whose depth is O(n logn).

The following theorem of Ben-Or provides a general lower bound on the
depth of algebraic decision trees. Before the formulation of the theorem, we
introduce an elementary topological notion. Let U ⊆ Rn be a set in the
n-dimensional space. Two points x1, x2 of the set U are called equivalent if
there is no decomposition U = U1∪U2 for which xi ∈ Ui and the closure of U1

is disjoint from the closure of U2. The equivalence classes of this equivalence
relation are called the components of U . We call a set connected if it has
only a single connected component.

Theorem 8.3.7 (Ben-Or). Suppose that the set U ⊆ Rn has at least N
connected components. Then every algebraic decision tree deciding x ∈ U
whose test functions are polynomials of degree at most d, has depth at least
logN/ log(6d) − n. If d = 1 then the depth of every such decision tree is at
least log3N .

Proof. We give the proof first for the case d = 1. Consider an algebraic
decision tree of depth h. This has at most 3h leaves. Consider a leaf reaching
the conclusion x ∈ U . Let the results of the tests on the path leading here
be, say,

f1(x) = 0, . . . , fj(x) = 0, fj+1(x) > 0, . . . , fh(x) > 0.

Let us denote the set of solutions of this set of equations and inequalities by
K. Then every input x ∈ K leads to the same leaf and therefore we have
K ⊆ U . Since every test function fi is linear, the set K is convex and is
therefore connected. So, K is contained in a single connected component of
U . It follows that the inputs belonging to different components of U lead to
different leaves of the tree. Therefore N ≤ 3h, which proves the statement
referring to the case d = 1.

In the general case, the proof must be modified because K is not neces-
sarily convex and so not necessarily connected either. Instead, we can use an
important result from algebraic geometry (a theorem of Milnor and Thom)
implying that the number of connected components of K is at most (2d)n+h.
From this, it follows similarly to the first part that

N ≥ 3h(2d)n+h ≥ (6d)n+h,

182 8. Decision trees

which implies the statement of the theorem.

For an application, consider the following problem: given n real numbers
x1, . . . , xn; let us decide whether they are all different. We consider an el-
ementary step the comparison of two given numbers, xi and xj . This can
have three outcomes: xi < xj , xi = xj and xi > xj . What is the decision
tree with the smallest depth solving this problem?

It is very simple to give a decision tree of depth n logn. Let us namely
apply an arbitrary sorting algorithm to the given elements. If anytime during
this, two compared elements are found to be equal then we can stop since we
know the answer. If not then after n logn steps, we can order the elements
completely, and thus they are all different.

Let us convince ourselves that Ω(n logn) comparisons are indeed needed.
Consider the following set:

U = { (x1, . . . , xn) : x1, . . . , xn are all different }.

This set has exactly n! connected components (two n-tuples belong to the
same component if they are ordered in the same way). So, according to
Theorem 8.3.7, every algebraic decision tree deciding x ∈ U in which the test
functions are linear, has depth at least log3(n!) = Ω(n logn). The theorem
also shows that we cannot gain an order of magnitude with respect to this
even if we permitted quadratic or other bounded-degree polynomials as test
polynomials.

We have seen that the convex hull of n planar points in general position
can be determined by an algebraic decision tree of depth n logn in which the
test polynomials have degree at most two. Since the problem of sorting can
be reduced to the problem of determining the convex hull it follows that this
is essentially optimal.

Exercise 8.3.5. (a) If we allow a polynomial of degree n2 as test function
then a decision tree of depth 1 can be given to decide whether n numbers are
different.

(b) If we allow degree n polynomials as test functions then a depth n
decision tree can be given to decide whether n numbers are different.

Exercise 8.3.6. Given are 2n different real numbers: x1, . . . , xn, y1, . . . , yn.
We want to decide whether it is true that after ordering them, there is a xj
between every pair of yi’s. Prove that this needs Ω(n logn) comparisons.

Chapter 9

Algebraic computations

Performing algebraic computations is a fundamental computational task, and
its complexity theory is analogous to the complexity theory of Turing ma-
chine computations, but in some respects it is more complicated. We have
already discussed some aspects of algebraic computations (power computa-
tion, Euclidean Algorithm, modulo m computations, Gaussian elimination)
in Section 3.1.

9.1 Models of algebraic computation

In the algebraic model of computation the input is a sequence of numbers
(x1, . . . , xn), and during our computation, we can perform algebraic oper-
ations (addition, subtraction, multiplication, division). The output is an
algebraic expression of the input variables, or perhaps several such expres-
sions. The numbers can be from any field, but we usually use the field of the
reals in this section. Unlike e.g., in Section 1.3, we do not worry about the
bit-size of these numbers, not even whether they can be described in a finite
way (except in Section 9.2.1 and at the end of Section 9.2.5, where we deal
with multiplication of very large integer numbers).

To be more precise, an algebraic computation is a finite sequence of in-
structions, where the k-th instruction is one of the following:

(A1) Rk = xj (1 ≤ j ≤ n) (reading an input),

(A2) Rk = c (c ∈ R) (assigning a constant),

(A3) Rk = Ri ⋆ Rj (1 ≤ i, j < k) (arithmetic operations)

(here ⋆ is any of the operations of addition, subtraction, multiplication or
division). The length of this computation is the number of instructions of
type (A2) and (A3). We must make sure that none of the expressions we

183

184 9. Algebraic computations

divide with is identically 0, and that the result of the algebraic computation
is correct whenever we do not divide by zero.

We sometimes refer to the values Ri as the partial results of the compu-
tation. The result of the computation is a subsequence of the partial results:
(Ri1 , . . . , Rik). Often this is just one value, in which case we may assume
that this is the last partial result (whatever comes after is superfluous).

As an example, the expression x2 − y2 can be evaluated using three oper-
ations:

R1 = x; R2 = y; R3 = R1 ·R1; R4 = R2 ·R2; R5 = R3 −R4. (9.1.1)

An alternate evaluation, using a familiar identity, is the following:

R1 = x; R2 = y; R3 = R1+R2; R4 = R1−R2; R5 = R3 ·R4. (9.1.2)

Sometimes we want to distinguish multiplying by a constant from multi-
plying two expressions; in other words, we consider as a separate operation

(A4) Rk = cRi (c ∈ R, 1 ≤ i < k) (multiplying by a constant),

even though it can be obtained as an operation of type (A2) followed by an
operation of the type (A3).

Often, one needs to consider the fact that not all operations are equally
costly: we do not count (A1) (reading the input); furthermore, multiplying
by a constant, adding or subtracting two variables (called linear operations)
are typically cheaper than multiplication or division (called nonlinear opera-
tions). For example, (9.1.1) and (9.1.2) use the same number of operations,
but the latter computation uses fewer multiplications. We will see that count-
ing non-linear operations is often a better measure of the complexity of an
algorithm, both in the design of algorithms and in proving lower bounds on
the number of steps.

An algebraic computation can also be described by a circuit. An algebraic
circuit is a directed graph that does not contain any directed cycle (i.e., it
is acyclic). The sources (the nodes without incoming edges) are called input
nodes. We assign a variable or a constant to each input node. The sinks (the
nodes without outgoing edges) are called output nodes. (In what follows, we
will deal most frequently with circuits that have a single output node.) Each
node v of the graph that is not a source has indegree 2, and it is labeled with
one of the operation symbols +,−, ·, /, and it performs the corresponding
operation on the two incoming numbers (whose order is specified, so that we
know which of the two is, e.g., the dividend and the divisor). See Figure
9.1.1.

Every algebraic computation translates into an algorithm on the RAM
machine (or Turing machine), if the input numbers are rational. However,
the cost of this computation is then larger, since we have to count the bit-
operations, and the number of bits in the input can be large, and the partial

9.2. Multiplication 185

Figure 9.1.1: Algebraic circuits representing computations (9.1.1) and (9.1.2)

results can be even larger. If we want to make sure that such a computation
takes polynomial time, we must make sure that the underlying algebraic
computation has polynomial length (as a function of the number of input
numbers), and also that the number of bits in every partial result is bounded
by a polynomial in the number of bits in the input.

9.2 Multiplication

We start with discussing the operation of multiplication of numbers, matrices
and polynomials (and also the related topic of inverting matrices). Multipli-
cation of numbers is trivial as an algebraic computation (it is a single step
in this model), so we discuss its bit-complexity; while this is a diversion,
the tricks and methods applicable here are in many ways analogous to the
algebraic computation algorithms for the multiplication of matrices and poly-
nomials.

9.2.1 Arithmetic operations on large numbers

Suppose that we want to do arithmetic operations with really large integers,
with thousands, perhaps even millions of bits, and we want to do it more
efficiently than the method we learn in elementary school. (Forty years ago
this would have been a theoretical exercise; now, with cryptography using
such numbers, it has become a very important issue.) In our analysis, we
count only operations between the input bits of the two numbers, and ignore
the additional work involved in organizing the computation (shifting around
the numbers etc.). This extra cost would not change the order of magnitude of
the work to be performed, but would make the analysis machine-dependent.

186 9. Algebraic computations

To be more exact, suppose that the numbers are given in their binary
representations:

u = un−1 . . . u1u0 = u0 + 2u1 + 22u2 + . . . ,+2n−1un−1,

v = vn−1 . . . v1v0 = v0 + 2v1 + 22v2 + . . . ,+2n−1vn−1

(for simplicity, we assume they have the same number of bits). We want the
result in binary form too, e.g., for multiplication:

w = uv = w2n−1 . . . w1w0 = w0 + 2w1 + 22w2 + · · ·+ 22n−1w2n−1

For addition and subtraction, we cannot gain any substantial time: the
method we learn in school takes 4n bit-operations, and just to read the num-
bers takes 2n time. But, somewhat surprisingly, the situation is quite differ-
ent for multiplication. Using the traditional method for multiplication, this
takes about n2 bit operations (every bit of u must be multiplied with every
bit of v; while these multiplications are trivial in binary, we have to write
down about n2 bits).

One would think that there is nothing better, but in fact we can save some
work. We start with a simple idea. Suppose that n = 2m is even, then we
can write

u = 2mU1 + U0, v = 2mV1 + V0,

where U1 = u2m−1 . . . um, U0 = um−1 . . . u0, and similarly V1 = v2m−1 . . . vm
and V0 = vm−1 . . . v0. Then

uv = 22mU1V1 + 2m(U0V1 + U1V0) + U0V0.

We could try to use this formula to compute the product recursively; but it
seems that to evaluate this expression, even if we ignore additions, we have
to perform four multiplications on m-bit integers, and it is easy to see that
this does not lead to any gain in the number of bit-operations. The key
observation is that with a little algebra, three multiplications are enough:
Since

U0V1 + U1V0 = (U1 − U0)(V0 − V1) + U0V0 + U1V1,

we can express the product as

(22m + 2m)U1V1 + 2m(U1 − U0)(V0 − V1) + (2m + 1)U0V0.

This way we have reduced the multiplication of two 2m-bit integers to three
multiplications of m-bit integers, and a few additions and multiplications by
powers of 2. It is easy to count these additional operations, to get that they
involve at most 22m bit operations.

9.2. Multiplication 187

If we denote by T (n) the number of operations used by this recursive
algorithm, then

T (2m) ≤ 3T (m) + 22m.

This formula gives, by induction, an upper bound on the number of bit-
operations, at least if the number of bits is a power of 2:

T (2k) ≤ 3T (2k−1) + 22 · 2k−1 ≤ · · · ≤ 3k + 22(2k−1 + 3 · 2k−2 + · · ·+ 3k−1)

= 3k + 22(3k − 2k) < 23 · 3k.

To multiply two integers with n bits for a general n, we can “pad” the numbers
with leading 0-s to increase the number of their bits to the next power of 2.
If k = ⌈logn⌉, then this algorithm will compute the product of two n-bit
integers using

T (n) ≤ T (2k) < 23 · 3k < 23 · 31+logn = 69 · nlog 3 < 69 · n1.585

bit-operations.
This simple method to compute the product of two large integers more

efficiently than the method learned in elementary school can be improved
substantially. We will see that using more advanced methods (discrete Fourier
transforms) much less bit-operations suffice.

9.2.2 Matrix multiplication

Assume that we want to multiply the matrices

A =

a11 . . . a1n
...

...
an1 . . . ann

and B =

b11 . . . b1n
...

...
bn1 . . . bnn

(for simplicity, we consider only the case when the matrices are square). The
product matrix is

C =

c11 . . . c1n
...

...
cn1 . . . cnn

where cij = ai1b1j + · · ·+ ainbnj . (9.2.1)

Performing these arithmetic operations in the simple way takes n3 multipli-
cations and n2(n− 1) ∼ n3 additions. Normally, we think of multiplications
as more costly than additions, so it could be useful to reduce the number of
multiplications, even if it would mean to increase the number of additions.
(However, we will see that, surprisingly, we can also reduce the number of
additions.)

188 9. Algebraic computations

Strassen noticed that the multiplication of 2 × 2 matrices can be carried
out using 7 multiplications and 18 additions, instead of the 8 multiplications
and 4 additions in (9.2.1). We form 7 products:

u0 = (a11 + a22)(b11 + b22),

u1 = (a21 + a22)b11,

u2 = a11(b12 − b22),

u3 = a22(b21 − b11),

u4 = (a11 + a12)b22,

u5 = (a21 − a11)(b11 + b12),

u6 = (a12 − a22)(b21 + b22). (9.2.2)

Then we can express the entries of the product matrix as follows:

c11 = u0 + u3 − u4 + u6,

c21 = u1 + u3,

c12 = u2 + u4,

c22 = u0 + u2 − u1 + u5. (9.2.3)

To have to perform 14 extra additions to save one multiplication does not
look like a lot of gain, but we see how this gain is realized once we extend the
method to larger matrices. Similarly as for multiplication of integers, we show
how to reduce the multiplication of (2n)×(2n) matrices to the multiplication
of n×n matrices. Let A, B and C = AB be (2n)× (2n) matrices, and let us
split each of them into four n× n matrices:

A =

(

A11 A12

A21 A22

)

, B =

(

B11 B12

B21 B22

)

, C =

(

C11 C12

C21 C22

)

.

Then Cij = Ai1B1j+Ai2B2j , and we can use the formulas (9.2.2) and (9.2.3)
to compute these four matrices using only 7 multiplications and 18 additions
of n×nmatrices. (Luckily, the verification of the formulas (9.2.2) and (9.2.3),
which we did not write down, does not use commutativity of multiplication, so
it remains valid for matrices.) Assuming that we start with a 2k×2k matrix,
we can do this splitting recursively, until we get down to 1×1 matrices (which
can be multiplied using a single multiplication of numbers). If the number
of rows and columns is not a power of 2, we start with adding all-0 rows and
columns to increase the size to the nearest power of 2.

Do we save any work by this more complicated algorithm? Let M(n)
denote the number of multiplications, and S(n) the number of additions,
when this algorithm is applied to n× n matrices. Then

M(2n) = 7M(n) and S(2n) = 18n2 + 7S(n).

9.2. Multiplication 189

Clearly M(1) = 1, S(1) = 0, and it is easy to prove by induction on k that

M(2k) = 7k and S(2k) = 6(7k − 4k).

Let k = ⌈logn⌉, then

M(n) =M(2k) = 7k < 71+logn = 7nlog 7 < 7n2.81,

and similarly
S(n) < 42nlog 7 < 42n2.81.

We see that while for n = 2 Strassen’s method only gained a little in the
number of multiplications (and lost a lot in the number of additions), through
this iteration we improved both the number of multiplications and the number
of additions, at least for large matrices.

It is not easy to explain where the formulas (9.2.2) and (9.2.3) come from;
in a sense, this is not even understood today, since it is open how much the ex-
ponent of n in the complexity of matrix multiplication can be reduced by sim-
ilar methods. The current best algorithm, due to Williams, uses O(n2.3727)
multiplications and additions.

9.2.3 Inverting matrices

Let B be a (2n)× (2n) matrix, which we partition into 4 parts:

B =

(

B11 B12

B21 B22

)

(9.2.1)

We can bring B to a block-diagonal form similarly as we would do for a 2× 2
matrix:
(

I 0
−B21B

−1
11 I

)(

B11 B12

B21 B22

)(

I −B−1
11 B12

0 I

)

=

(

B11 0
0 B22 −B21B

−1
11 B12

)

.

(9.2.2)
To simplify notation, let C = B22 − B21B

−1
11 B12. Inverting and expressing

B−1, we get

B−1 =

(

I −B−1
11 B12

0 I

)(

B−1
11 0
0 C−1

)(

I 0
−B21B

−1
11 I

)

=

B−1
11 +B−1

11 B12C
−1B21B

−1
11 −B−1

11 B12C
−1

−C−1B21B
−1
11 C−1

 (9.2.3)

This is a messy formula, but it describes how to compute the inverse of a
(2n) × (2n) matrix using two matrix inversions (for B11 and C), 6 matrix

190 9. Algebraic computations

multiplications and 2 additions (one of which is in fact a subtraction), all
performed on n × n matrices. We could use this recursively as before, but
there is a problem: how do we know that B11 is invertible? This does not
follow even if we assume that B is invertible.

The way out is to use the identity

A−1 = (A⊤A)−1A⊤. (9.2.4)

This shows that if we can invert the matrix B = A⊤A, then, at the cost of a
further matrix multiplication, we can compute the inverse of A. (We do not
count the cost of computing the transpose of A, which involves only moving
numbers around, no algebraic operations.) Now if A is nonsingular, then B
is symmetric and positive definite. Hence the principal submatrix B11 in the
decomposition (9.2.1) is also symmetric and positive definite. Furthermore,
identity (9.2.2) implies that C is also symmetric and positive definite.

These facts have three important consequences. First, it follows that B11

and C are nonsingular, so the inverses B−1
11 and C−1 in (9.2.3) make sense.

Second, it follows that when computing B−1
11 and C−1 recursively, then we

stay in the territory of inverting symmetric and positive definite matrices, and
so we don’t have to appeal to the trick (9.2.4) any more. Third, it follows that
B21 = B⊤

12, which saves us two multiplications, since B21B
−1
11 = (B−1

11 B12)
⊤

and C−1B21B
−1
11 = (B−1

11 B12C
−1)⊤ do not need to be computed separately.

Let I+(n) denote the minimum number of multiplications needed to invert
an n× n positive definite matrix, and let L(n) denote the minimum number
of multiplications needed to compute the product of two n× n matrices. It
follows from formula (9.2.3) that

I+(2n) ≤ 2I+(n) + 4L(n).

Using the matrix multiplication algorithm given in Section 9.2.2, we get that

I+(2k+1) ≤ 2I+(2k) + 4 · 7k,
which implies by induction that

I+(2k) ≤ 7k.

Using (9.2.4), we get that a nonsingular 2k × 2k matrix can be inverted
using 3 · 7k multiplications. Just as in Section 9.2.2, this implies a bound for
general n: an n × n matrix can be inverted using no more than 21 · nlog 7

multiplications. The number of additions can be bounded similarly.

9.2.4 Multiplication of polynomials

Suppose that we want to compute the product of two real polynomials in one
variable, of degree n. Given

P (x) = a0 + a1x+ · · ·+ anx
n, and Q(x) = b0 + b1x+ · · ·+ bnx

n,

9.2. Multiplication 191

we want to compute their product

R(x) = P (x)Q(x) = c0 + c1x+ · · ·+ c2nx
2n.

The coefficients of this polynomial can be computed by the formulas

ci = a0bi + a1bi−1 + · · ·+ aib0. (9.2.1)

This is often called the convolution of the sequences (a0, a1, . . . , an) and
(b0, b1, . . . , bn). To compute every coefficient by these formulas takes (n+1)2

multiplications.
We can do better using the fact that we can substitute into a polynomial.

Let us substitute the values 0, 1, . . . , 2n into the polynomials. In other words,
we compute the values P (0), P (1), . . . , P (2n) and Q(0), Q(1), . . . , Q(2n), and
then compute their products R(j) = P (j)Q(j). From here, the coefficients
of R can be determined by solving the equations

c0 = R(0)

c0 + c1 + c2 + · · ·+ c2n = R(1)

c0 + 2c1 + 22c2 + · · ·+ 22nc2n = R(2)

... (9.2.2)

c0 + (2n)c1 + (2n)2c2 + · · ·+ (2n)2nc2n = R(2n)

This does not seem to be a great idea, since we need about n2 multipli-
cations (and about the same number of additions) to compute the values
P (0), P (1), . . . , P (2n) and Q(0), Q(1), . . . , Q(2n); it takes a small number
of multiplications to get the values R(0), R(1), . . . , R(2n), but then of the
order of n3 multiplications and additions to solve the system (9.2.2) if we
use Gaussian elimination (fewer, if we use the more sophisticated methods
discussed in Section 9.2.2, but still substantially more than n2). We see
some gain, however, if we distinguish two kinds of multiplications: multipli-
cation by a fixed constant, or multiplication of two expressions containing
the parameters (the coefficients ai and bi). Recall, that additions and mul-
tiplications by a fixed constant are linear operations. The computation of
the values P (0), P (1), . . . , P (2n) and Q(0), Q(1), . . . , Q(2n), as well as the
solution of equations (9.2.2), takes only linear operations. Nonlinear opera-
tions are needed only in the computation of the R(j), so their number is only
2n+ 1.

It would be very useful to reduce the number of linear operations too. The
most time-consuming part of the above is solving equations (9.2.2); it takes
of the order of n3 operations if we use Gaussian elimination (these are all
linear, but still a lot). Using more of the special structure of the equations,

192 9. Algebraic computations

this can be reduced to O(n2) operations. But we can do even better, if we
notice that there is nothing special about the substitutions 0, 1, . . . , 2n, we
could use any other 2n+ 1 real or even complex numbers. As we are going
to discuss in Section 9.2.5, substituting appropriate roots of unity leads to a
much more efficient method for the multiplication of polynomials.

9.2.5 Discrete Fourier transform

Let P (x) = a0 + a1x + · · · + anx
n be a real polynomial, and fix any r > n.

Let ε = e2πi/r be the first r-th root of unity, and consider the values

âk = P (εk) = a0 + a1ε
k + a2ε

2k + · · ·+ anε
nk (k = 0, . . . , r− 1). (9.2.1)

The sequence (â0, â1, . . . , âr−1) is called the discrete Fourier transform of
order r of the sequence of coefficients (a0, a1, . . . , an). We will often append
r−n− 1 zeros to this sequence, to get a sequence (a0, a1, . . . , ar−1) of length
r.

Discrete Fourier transforms have a number of very nice properties and
important applications, of which we only discuss those related to polynomial
multiplication.

We start with some simple but basic properties. First, the inverse trans-
formation can be described by similar formulas:

ak =
1

r

(

â0 + â1ε
−k + â2ε

−2k + · · ·+ âr−1ε
−(r−1)k

)

(k = 0, . . . , r − 1).

(9.2.2)
This can be verified by substituting the definition of âk into these formulas.
Second, assume that r > 2n, and let (b0, . . . , br−1) and (c0, . . . , cr−1) be the
coefficient sequences of the polynomials Q(x) and R(x) = P (x)Q(x), and let
(b̂0, . . . , b̂r−1) and (ĉ0, . . . , ĉr−1) be their Fourier transforms of order r. Since
âk is a the value of P at εk, we get that

ĉk = âkb̂k. (9.2.3)

The main point in using discrete Fourier transforms is that they can be
computed very fast; this method is one of the most successful algorithmic
tools in computations. To describe a fast method for computing the discrete
Fourier transform, suppose that r = 2s is even. The Fourier transform (of
order r) of a sequence (a0, a1, . . . , ar−1) can be split into two parts:

âk = a0 + a1ε
k + · · ·+ ar−1ε

(r−1)k

= (a0 + a2ε
2k + · · ·+ a2s−2ε

(2s−2)k)

+ εk(a1 + a3ε
2k + · · ·+ a2s−1ε

(2s−2)k). (9.2.4)

9.2. Multiplication 193

Both expressions in parenthesis are Fourier transforms themselves: since ε2

is the first s-th root of unity, they are Fourier transforms of order s of the
two sequences (a0, a2, . . . , a2s−2) and (a1, a3, . . . , a2s−1). So we have reduced
the computation of a Fourier transform of order r = 2s to the computation
of two Fourier transforms of order s. We can do this recursively.

How much work is involved? Let K(r) denote the number of arithmetic
operations this algorithm uses to perform a Fourier transform of order r = 2s.
Recursively, we need 2K(s) operations to compute the two smaller Fourier
transforms. We need 2s − 2 multiplications to compute the powers of ε.
Once we have these powers, we need only two further arithmetic operations
to apply (9.2.4), but we have to do so for every k, so we need 4s operations.
Putting these together, we get

K(2s) ≤ 2K(s) + 6s.

If s = 2m is a power of 2, then this inequality implies, by induction, that

K(2m) ≤ 3m · 2m.

For a general r, we can choose m = ⌈log r⌉, and get

K(r) ≤ K(2m) ≤ 3(1 + log r)21+log r = 6(1 + log r)r.

This is a much better bound than the O(r2) operations we get from the
definition.

As an application, let us return to multiplying two polynomials P and Q of
degree n. This can be done by computing Fourier transforms of order r = 2n+
2 (this takes O(n logn) arithmetic operations), then computing the product
of the values P (εk) and Q(εk) (this takes O(n) further operations), and then
computing the inverse Fourier transform by essentially the same method as
for the “forward” Fourier transform (this takes O(n log n) operations). So the
product of two polynomials of degree n can be computed using O(n log n)
arithmetic operations.

As another application of discrete Fourier transforms, we show that two
n-bit numbers can be multiplied using O(n log3 n) bit-operations. (This
bound can be improved to O(n logn log logn) bit-operations with more care.)
We can use the multiplication of polynomials. Let u = un−1 . . . u1u0 and
v = vn−1 . . . v1v0 be two positive integers, given in binary. Consider the
polynomials

U(x) = u0 + u1x+ u2x
2 + · · ·+ un−1x

n−1

and
V (x) = v0 + v1x+ v2x

2 + · · ·+ vn−1x
n−1.

194 9. Algebraic computations

Then u = U(2) and v = V (2), and hence uv = U(2)V (2). As we have
seen, the product polynomial UV can be computed using O(n log n) arith-
metic operations. The substitution of 2 can be computed using O(n) further
arithmetic operations.

However, here we are counting not arithmetic operations, but bit-opera-
tions. The integers that we compute (the 2n + 1 coefficients of the product
polynomial) are not larger than n, and so the substitution of 2 into the
product UV (computing the result in binary) takes no more than O(n log n)
bit-operations.

One has to be more careful with computing the Fourier transform and its
inverse, since the roots of unity are complex irrational numbers, which have to
be computed with some finite but suitably large precision. Computing with
complex numbers just means computing with twice as many real numbers,
and arithmetic operations between complex numbers just mean two or six
arithmetic operations between real numbers, so using complex numbers does
not cause any trouble here. But we have to address the issue of precision.

If we compute the binary representations of the real and complex parts of
the roots of unity up to 6 logn bits, then the error we make is less than n−6.
Even when multiplied by an integer not larger than O(n), the error is still only
O(n−5), and if O(n) such terms are added up, the error remains only O(n−4).
Thus we get the values of U(εk) and V (εk) with error O(n−4), and since
|U(εk)| ≤ n and |V (εk)| ≤ n, it follows that we get the product U(εk)V (εk)
with error O(n−3). Applying inverse Fourier transformation to these values,
we get the result with error O(n−1). Rounding these values to the nearest
integer, we get the value uv. All numbers involved in these computations
have O(log n) bits, so an arithmetic operation between them takes O(log2 n)
bit-operations. This means a total of O(n log3 n) bit-operations.

9.3 Algebraic complexity theory

We return to the notations introduced in Section 9.1.

9.3.1 The complexity of computing square-sums

As a warm-up, we prove the following lower bound:

Theorem 9.3.1. Every algebraic computation for x21 + · · ·+ x2n from inputs
x1, . . . , xn must contain at least n nonlinear operations.

If you feel that this must be trivial, recall that the expression x21 − x22
can be computed using a single multiplication, from the formula x21 − x22 =
(x1 − x2)(x1 + x2).

9.3. Algebraic complexity theory 195

Proof. The main idea is to replace nonlinear (A3) operations (multiplications
and divisions) by operations of type (A4) (multiplication with a constant) and
show that the output is still correct for several inputs, which will lead to a
contradiction.

Suppose that there is an algebraic computation for x21 + · · ·+ x2n, having
m < n nonlinear operations, which we label 1, 2, . . . ,m. We fix some real
numbers, a1, . . . , an, such that if we input xi = ai, then there are no divisions
by zero in the circuit. We denote the value of Rj by uj for this input. Then
we replace (in acyclic order) every operation of the form Rk = Ri · Rj by
Rk = uj · Ri (operation of type (A4)) and write down the equation Rj = uj
where Rj is a linear function of the input variables xi, as all earlier nonlinear
operations have been already replaced by linear ones. We similarly replace
operations of the form Rk = Ri/Rj by Rk = (1/uj) · Ri and write down the
equation Rj = uj.

The m equations that we wrote down can be viewed as a system of linear
equations for the unknowns x1, . . . , xn. This system is solvable, since the
values xi = ai satisfy it. Furthermore, the number of equations is m, which
is less than the number n of unknowns, and hence the system has an at
least one-dimensional family of solutions. A one-dimensional subspace of the
solutions can be represented as xi = ai + tbi, where the bi are real numbers,
not all zero, and t ranges over all reals.

Let us substitute xi = ai + tbi. The Rj = uj equations remain valid (for
any t), thus the circuit makes the same computations as the original one. The
output will be also the same, linear expression in x1, . . . , xn. This means that

(a1 + tb1)
2 + · · ·+ (an + tbn)

2

is a linear function of t. But this is a contradiction, since the coefficient of t2

is b21 + · · ·+ b2n, which is positive.

9.3.2 Evaluation of polynomials

Let f(x, y) = x1y+ · · ·+ xny
n be a polynomial in one variable y. We denote

the coefficients by x1, . . . , xn, to emphasize that they are not fixed, but real
parameters. We want to evaluate f at a given value y = u with some x = a.
The following familiar identity, called the Horner scheme achieves this with
just n multiplications and n− 1 additions:

f(a, u) = (. . . ((anu+ xn−1)u + xn−2)u · · ·+ x1)u.

Of course, there are many concrete polynomials that can be evaluated faster.
For example, the value of

yn +

(

n

n− 1

)

yn−1 + · · ·+ ny + 1 = (y + 1)n

196 9. Algebraic computations

can be computed using a single addition and O(log n) multiplications. How-
ever, in the general case, the Horner scheme is best possible:

Theorem 9.3.2. Every algebraic computation computing f(x, y) from inputs
x = (x1, . . . , xn) and y must contain at least n nonlinear operations.

Proof. The proof is based on the same idea as Theorem 9.3.1, but we have to
do it differently. The nonlinear operations will be replaced by a sum of two
quantities, the first of which will be linear in x and the second a a rational
function of y with real coefficients.

Suppose that there is an algebraic computation involving m nonlinear
operations, where m < n. Going through the computation in the order in
which it is given, we modify the nonlinear operations as follows.

The output of the k-th operation will be replaced by an expression of the
special form

Rk = uk · x+ dk(y), (9.3.1)

where uk ∈ R
n, and dk(y) is a rational function of y with real coefficients (so

it is linear in x1, . . . , xn, but not necessarily in y). Furthermore, for some of
these operations (not necessarily for all of them) we write down a dependence
relation between the input numbers of the form

vk · x = hk(y), (9.3.2)

where again vk ∈ R
n, and hk(y) is a rational function of y with real coeffi-

cients.
The operations Rk = xi and Rk = y are already in the above form, while

in case of Rk = Ri±Rj the equations uk = ui±uj and dk(y) = di(y)±dj(y)
are suitable choices, while for Rk = cRi the equations uk = cui and dk(y) =
cdi(y) are good. For these we do not have to write down a dependence
relation 9.3.2.

To describe how this replacement is done, let us start with the most dif-
ficult case, when the k-th step is the division Rk = Ri/Rj. We have some
subcases to consider.

(1) Suppose that uk (in the output Rk of the k-th step) is linearly inde-
pendent of the vectors vr (r < k) of the previous conditions (9.3.2). We add
a new condition to the list (9.3.2):

uj · x+ dj(y) = 1,

(in other words, we take vk = uj and hk(y) = 1 − dj(y)). The new output
of the operation will be Ri (in other words, uk = ui and dk(y) = di(y)).

(2) Suppose that uj is a linear combination of the vectors vr (r < k):

uj =

k−1
∑

r=1

αrvr,

9.3. Algebraic complexity theory 197

but ui is not. Define the rational function

dj(y) = dj(y) +

k−1
∑

r=1

αrhr(y)

(where αr = 0 if we did not write down a new equation at the computation
of Rr). Add a new condition to the list (9.3.2):

ui · x+ di(y) = 1,

and let the new output of the operation be 1/dj(y). (So uk = 0 in this case.)

(3) Finally, suppose that both ui and uk are a linear combinations of the
vectors vr (r < k):

uj =

k−1
∑

r=1

αrvr, ui =

k−1
∑

r=1

βrvr.

Define the rational functions

dj(y) = dj(y) +

k−1
∑

r=1

αrhr(y), di(y) = di(y) +

k−1
∑

r=1

βrhr(y),

and let the new output be di(y)/dj(y). There is no new condition of the type
(9.3.2) to record.

Multiplication steps are modified similarly. From the construction the
following statement follows directly.

Claim 9.3.3. The vectors vk in the conditions (9.3.2) are linearly indepen-
dent.

Claim 9.3.4. For every input satisfying conditions (9.3.2), the modified al-
gorithm computes the same values as the original at each step.

Proof. The proof is by induction on the index of the step. Suppose that
the Claim holds for the first k − 1 outputs. If the k-th step is an addition,
subtraction or multiplication by a constant, then the Claim holds for the k-th
output trivially. If the k-th step is a division, and (1) holds, then

ui · x+ di(y)

uj · x+ dj(y)
= ui · x+ di(y) = uk · x+ dk(y).

If (2) applies, then

dj(y) = dj(y) +

k−1
∑

r=1

αrhr(y) =

k−1
∑

r=1

αr(vr · x) = uj · x+ dj(y),

198 9. Algebraic computations

and so
ui · x+ di(y)

uj · x+ dj(y)
=

1

uj · x+ dj(y)
=

1

dj(y)
= dk(y).

In case (3), and in the case of multiplication, the argument is similar.

In particular, if we apply this computation with any input that satisfies
the conditions (9.3.2), then the modified computation will have the same
output as the original. Fixing an arbitrary value of y, the conditions (9.3.2)
give a system of linear equations on the coefficients xi. The number of these
equations is at mostm < n. Since the left hand sides are linearly independent,
this system has an infinite number of solutions; in fact, it has a one-parameter
linear family xi = ai(y)+tbi of solutions. Here the ai(y) are rational functions
of y and the bi can be obtained as solutions of the homogeneous system of
equations c · x = 0, and therefore they are independent of y. Not all the bi
are 0.

For every t, the original algorithm computes on input xi = ai(y)+ tbi and
y the value

n
∑

i=1

(ai(y) + tbi)y
i =

n
∑

i=1

ai(y)y
i + t

n
∑

i=1

biy
i.

On the other hand, these inputs satisfy the conditions (9.3.2), and so the
output is

u · (a(y) + tb) + d(y) = u · a(y) + tu · b+ d(y)

for every t. So the coefficient of t must be the same in both expressions:
∑n

i=1 biy
i = u ·b. But since b and u are independent of y, and not all bi are

0, this cannot hold for every y.

9.3.3 Formula complexity and circuit complexity

Let P (x1, . . . , xn) be a polynomial with real coefficients. Most often, such a
polynomial is given by a formula, using addition, subtraction and multipli-
cation. A formula can be defined as an algebraic circuit (without divisions)
where every outdegree is at most 1.

The complexity of a formula is the number of arithmetic operations in it.
Different formulas representing the same polynomials can have very different
complexity. For example, consider the expansion

(x1 + y1)(x2 + y2) . . . (xn + yn) = x1x2 . . . xn + y1x2 . . . xn + · · ·+ y1y2 . . . yn.

Both sides are formulas representing the same polynomial, but the left side
has complexity 2n − 1, while the right side has complexity (n − 1)2n. We
define the formula complexity of a polynomial as the minimum complexity in
any formula representing the polynomial. We define the circuit complexity of

9.3. Algebraic complexity theory 199

a polynomial as the minimum number of non-source nodes in any algebraic
circuit computing the polynomial. Clearly this is at most as large as the
formula complexity, but it can be smaller, as the next example shows.

Let us illustrate the subtleties of circuit complexity and formula complexity
on two important polynomials. The determinant

det(X) =

∣

∣

∣

∣

∣

∣

∣

x11 . . . x1n
...

...
xn1 . . . xnn

∣

∣

∣

∣

∣

∣

∣

is a polynomial in n2 variables. Using the familiar expansion of the deter-
minant, it takes (n− 1)n! multiplications to evaluate it. On the other hand,
using Gaussian elimination, it can be evaluated with O(n3) multiplications,
and in fact this can be improved to O(M(n)) = O(n2.3727) multiplications
(see Exercise 9.3.3).

There is no compact (polynomial-size) formula to describe the determi-
nant. In fact, there is no easy substantial improvement over the full ex-
pansion. But it can be proved that the determinant does have a formula
of size nO(logn). It is not known, however, whether the determinant has a
polynomial-size formula (probably not).

The other polynomial to discuss here is the permanent. This is very sim-
ilar to the determinant: it has a similar expansion into n! terms, the only
difference is that all expansion terms are added up with positive sign. So for
example

per

(

x11 x12
x21 x22

)

= x11x22 + x12x21.

The permanent plays an important role in various questions in combina-
torics as well as in statistical physics. We mention only one: the permanent
of the adjacency matrix of a bipartite graph G (in the bipartite sense) with
n nodes in each class is the number of perfect matchings in G.

It turns out that the evaluation of the permanent is NP-hard, even if its
entries are 0 or 1. This implies that there is no hope to find an algebraic
computation of polynomial length for the evaluation of the permanent. It
is even less likely to find a polynomial size formula for the permanent, but
(quite frustratingly) this is not proved.

Exercise 9.3.1. (a) Show by an example that in an algebraic computation
of length n, where the input numbers are rational with bit complexity poly-
nomial in n, the bit complexity of the result can be exponentially large.

(b) Prove that if an algebraic computation of length at most n, the con-
stants (in operations of type (A2)) as well as the input numbers are rational
with bit complexity at most n, and we know that the output is an integer

200 9. Algebraic computations

with at most n bits, then the output can be computed using a polynomial
number of bit operations.

Exercise 9.3.2. An LUP-decomposition of an n × n matrix A is a triple
(L,U, P) of n×nmatrices such that A = LUP , where L is a a lower triangular
matrix with 1’s in the diagonal, U is an upper triangular matrix, and P is
a permutation matrix (informally, this means that we represent the matrix
as the product of a lower triangular and an upper triangular matrix, up to a
permutation of the columns). Show that if we can multiply two matrices with
M(n) arithmetic operations, then we can compute the LUP-decomposition
of an n× n matrix with O(M(N)) arithmetic operations.

Exercise 9.3.3. Show that if we can multiply two n×n matrices with M(n)
arithmetic operations, then we can compute the determinant of a matrix
using O(M(n)) arithmetic operations.

Exercise 9.3.4. Show that if we can invert an n × n matrix with I(n)
arithmetic operations, then we multiply two n × n matrices using O(I(3n))
arithmetic operations.

Exercise 9.3.5. Prove that to compute the product of an n×n matrix and
a vector:

x11 . . . x1n
...

...
xn1 . . . xnn

·

y1
...
yn

takes at least n2 nonlinear operations.

Chapter 10

Parallel algorithms

New technology makes it more urgent to develop the mathematical founda-
tions of parallel computation. In spite of the energetic research done, the
search for a canonical model of parallel computation has not settled on a
model that would strike the same balance between theory and practice as
the Random Access Machine. The main problem is the modeling of the com-
munication between different processors and subprograms: this can happen
on immediate channels, along paths fixed in advance, “radio broadcast” like,
etc.

A similar question that can be modeled in different ways is the synchro-
nization of the clocks of the different processors: this can happen with some
common signals, or not even at all.

In this chapter, we treat only one model, the so-called parallel Random
Access Machine, which has been elaborated most from a complexity-theoretic
point of view. Results achieved for this special case expose, however, some
fundamental questions of the parallelizability of computations. The presented
algorithms can be considered, on the other hand, as programs written in some
high-level language: they must be implemented according to the specific
technological solutions.

10.1 Parallel random access machines

The most investigated mathematical model of machines performing parallel
computation is the parallel Random Access Machine (PRAM). This consists
of some fixed number p of identical Random Access Machines (processors).
The program store of the machines is common and they also have a common
memory consisting, say, of the cells x[i] (where i runs through the integers).
It will be convenient to assume (though it would not be absolutely neces-

201

202 10. Parallel algorithms

sary) that each processor owns an infinite number of program cells u[i]. At
the beginning u[0] contains the serial number of the processor (otherwise all
processor would execute the same operations). Each processor can read and
write its own cells u[i] as well as the common memory cells x[i]. In other
words, to the instructions allowed for the Random Access Machine, we must
add the instructions

u[i] := 0; u[i] := u[i] + 1; u[i] := u[i]− 1;
u[i] := u[i] + u[j]; u[i] := u[i]− u[j]; u[u[i]] := u[j]; u[i] := u[u[j]];
u[i] := x[u[j]]; x[u[i]] := u[j]; IF u[i] ≤ 0 THEN GOTO p

Furthermore, we also add multiplication and division to the instructions,
that is we can also use u[i] := u[i]∗u[j] and u[i] := u[i]÷u[j] where ∗ denotes
multiplication and a ÷ b is the largest c for which |a| ≥ |b| ∗ c. These are
added so that each processor can compute from its serial number in a single
step x(f(u[0])), the cell of the input it has to read first, if f is some simple
function.

We write the input into the cells x[1], x[2], In addition to the input
and the common program, we must also specify how many processors will
be used; we can write this into the cell x[−1]. The processors carry out the
program in parallel but in lockstep. (Since they can refer to their own name
they will not necessarily compute the same thing.) We use a logarithmic
cost function: the cost of writing or reading an integer k from a memory
cell x[t] or u[t] is the total number of digits in k and t, i.e., approximately
log |k| + log |t|. (In case of multiplication and division we also add to this
the product of their digits.) The next step begins after each processor has
finished the previous step. The machine stops when each processor arrives at
a program line in which there is no instruction. The output is the content
of the cells x[i].

An important question to decide is how to regulate the use of the common
memory. What happens if several processors want to write to or read from
the same memory cell? Several conventions exist for the avoidance of these
conflicts. We mention four of these:

• Two processors must not read from or write to the same cell. We call
this the exclusive-read, exclusive-write (EREW) model. We could
also call it (completely) conflict-free. This must be understood in
such a way that it is the responsibility of the programmer to prevent
attempts of simultaneous access to the same cell. If such an attempt
occurs the machine signals program error.

• Maybe the most natural model is the one in which we permit many
processors to read the same cell at the same time but when they want
to write this way, this is considered a program error. This is called the

10.1. Parallel random access machines 203

concurrent-read, exclusive-write (CREW) model, and could also
be called half conflict-free.

• Several processors can read from the same cell and write to the same
cell but only if they want to write the same thing. (The machine sig-
nals a program error only if two processors want to write different
numbers into the same cell). We call this model concurrent-read,
concurrent-write (CRCW); it can also be called conflict-limiting.

• Many processors can read from the same cell or write to the same
cell. If several ones want to write into the same cell the processor
with the smallest serial number succeeds: this model is called prior-
ity concurrent-read, concurrent-write (P-CRCW), or shortly, the
priority model.

Exercise 10.1.1. a) Show that we can select the smallest from n numbers
using n2 processors on the conflict-limiting model in O(1) steps.

b) Show that this can be done using n processors in O(log log n) steps.

Exercise 10.1.2. a) Prove that one can determine which one of two 0-
1-strings of length n is lexicographically larger, using n processors, in
O(1) steps on the priority model and in O(log n) steps on the conflict-
free model.

b∗) Show that on the conflict-free model, this actually requires Ω(log n)
steps.

c∗) How many steps are needed on the other two models?

Exercise 10.1.3. Show that the sum of two 0-1-sequences of length at most
n, as binary numbers, can be computed with n2 processors in O(1) steps on
the priority model.

Exercise 10.1.4. a) Show that the sum of n 0-1-sequences of length at
most n as binary numbers can be computed, using n3 processors, in
O(log n) steps on the priority model.

b∗) Show that n2 processors are also sufficient for this.

c∗) Show the same on the conflict-free model.

d) How many steps are needed to multiply two n bit integers n2 processors
on the conflict-free model?

Exercise 10.1.5. An interesting and non-unique representation of integers
is the following. We write every n as n =

∑r
i=0 bi4

i where −3 ≤ bi ≤ 3
for each i. Show that the sum of two numbers given in such form can be
computed using n processors in O(1) steps on the conflict-free model.

204 10. Parallel algorithms

On the PRAM machines, it is necessary to specify the number of processors
not only since the computation depends on this but also since this is —
besides the time and the storage — an important complexity measure of the
computation. If it is not restricted then we can solve very difficult problems
very fast. We can decide, e.g., the 3-colorability of a graph if, for each coloring
of the set of vertices and each edge of the graph, we make a processor that
checks whether in the given coloring, the endpoints of the given edge have
different colors. The results must be summarized yet, of course, but on the
conflict-limiting machine, this can be done in a single step.

First, it might sound scary that an algorithm might need n2 or n3 pro-
cessors. However, the following fundamental statement due to Brent says,
informally, that if a problem can be solved faster in parallel using many pro-
cessors, then the same is true for less processors. For this define the total
work of an algorithm as the sum of the number of steps of all processors.
(Here we ignore the cost function.)

It is easy to convince ourselves that the following statement holds.

Proposition 10.1.1. If a computation can be performed with any number of
processors in t steps and w total work (on any model), then for every positive
integer p it can be solved with p processors in w

p +t steps (on the same model).
In particular, it can be performed on a sequential Random Access Machine

in w + t steps.

Proof. Suppose that in the original algorithm wi processors are active in the
i-th step, so w =

∑t
i=1 wi. The i-th step can be obviously performed by p

processors in ⌈wi

p ⌉ steps, so we need in total
∑t

i=1⌈wi

p ⌉ ≤ ∑t
i=1(

wi

p + 1) ≤
w
p + t steps using p processors.

As a corollary, if we have an algorithm using, say, n2 processors for logn
steps, then for every p (e.g., p =

√
n, or p = 32) we can make another that

uses p processors and makes (n2 logn)/p+ logn steps.
The fundamental question of the complexity theory of parallel algorithms

is just the opposite of this: given is a sequential algorithm with time w and
we would like to implement it on p processors in essentially w/p (say, in
O(w/p) logw) steps.

It is obvious that the above models are stronger and stronger since they
permit more and more. It can be shown, however, that the computations we
can do on the strongest one, the priority model, are not much faster than
the ones performable on the conflict-free model (at least if the number of
processors is not too large). The following lemma is concerned with such a
statement.

Lemma 10.1.2. For every program P, there is a program Q such that if
P computes some output from some input with p processors in time t on

10.1. Parallel random access machines 205

the priority model then Q computes on the conflict-free model the same with
O(p2) processors in time O(t log2 p).

Proof. A separate processor of the conflict-free machine will correspond to
every processor of the priority machine. These are called supervisor pro-
cessors. Further, every supervisor processor will have p subordinate pro-
cessors. One step of the priority machine computation will be simulated by
a stage of the computation of the conflict-free machine.

The basic idea of the construction is that whatever is in the priority ma-
chine after a given step of the computation in a given cell z, should be con-
tained, in the corresponding stage of the computation of the conflict-free
machine, in each of the cells with addresses 2pz, 2pz + 1, . . . , 2pz + p− 1. If
in a step of the priority machine, processor i must read or write cell z then
in the corresponding stage of the conflict-free machine, the corresponding
supervisor processor will read or write the cell with address 2pz+ i. This will
certainly avoid all conflicts since the different processors use different cells
modulo p.

We must make sure, however, that by the end of the stage, the conflict-free
machine writes into each cell 2pz, 2pz + 1, . . . , 2pz + p− 1 the same number
the priority rule would write into z in the corresponding step of the priority
machine. For this, we insert a phase consisting of O(log p) auxiliary steps
accomplishing this to the end of each stage.

First, each supervisor processor i that in the present stage has written
into cell 2pz + i, writes a 1 into cell 2pz + p+ i. Then, in what is called the
first step of the phase, it looks whether there is a 1 in cell 2pz + p + i − 1.
If yes, it goes to sleep for the rest of the phase. Otherwise, it writes a 1
there and “wakes” a subordinate. In general, at the beginning of step k,
processor i will have at most 2k−1 subordinates awake (including, possibly,
itself); these (at least the ones that are awake) will examine the corresponding
cells 2pz+ p+ i− 2k−1, ..., 2pz+ p+ i− (2k− 1). The ones that find a 1 go to
sleep. Each of the others writes a 1, wakes a new subordinate, sends it 2k−1

steps left while itself goes 2k steps left. Whichever subordinate gets below
2pz + p goes to sleep; if a supervisor i does this, it knows already that it has
“won”.

It is easy to convince ourselves that if in the corresponding step of the
priority machine, several processors wanted to write into cell z then the cor-
responding supervisor and subordinate processors cannot get into conflict
while moving in the interval [2pz + p, 2pz + 2p − 1]. It can be seen namely
that in the k-th step, if a supervisor processor i is active then the active
processors j ≤ i and their subordinates have written 1 into each of the 2k−1

positions downwards starting with 2pz + p + i that are still ≥ 2pz + p. If
a supervisor processor or one of its subordinates started to the right from
them and would reach a cell ≤ i in the k-th step, it will necessarily step into

206 10. Parallel algorithms

one of these 1’s and go to sleep, before it could get into conflict with the i-th
supervisor processor or its subordinates. This also shows that always a single
supervisor will win, namely the one with the smallest number.

The winner still has the job to see to it that what it wrote into the cell
2pz+ i will be written into each cell of interval [2pz, 2pz+p−1]. This is easy
to do by a procedure very similar to the previous one: the processor writes
the desired value into cell 2pz, then it wakes a subordinate; the two of them
write the desired value into the cells 2pz+1 and 2pz+2 then they wake one
subordinate each, etc. When they all have passed 2pz + p− 1 the phase has
ended and the next simulation stage can start.

We leave to the reader to plan the waking of the subordinates.
Each of the above “steps” requires the performance of several program

instructions but it is easy to see that only a bounded number is needed,
whose cost is, even in case of the logarithmic-cost model, only O(log p +
log z). In this way, the time elapsing between two simulating stages is only
O(log p(log p+ log z)). Since the simulated step of the priority machine also
takes at least log z units of time the running time is thereby increased only
O(log2 p)-fold.

In what follows if we do not say otherwise we use the conflict-free (EREW)
model. According to the previous lemma, we could have agreed on one of the
other models.

Randomization is, as we will see at the end of the next section, an even
more important tool in the case of parallel computations than in the sequen-
tial case. The randomized parallel Random Access Machine differs
from the above introduced parallel Random Access Machine only in that
each processor has an extra cell in which, with probability 1/2, there is al-
ways 0 or an 1. If the processor reads this bit then a new random bit occurs
in the cell. The random bits are completely independent (both within one
processor and between different processors).

10.2 The class NC

We say that a program for the parallel Random Access Machine is an NC-
program if there are constants c1, c2 > 0 such that for all inputs x the program
works conflict-free with O(|x|c1) processors in time O(logc2 |x|). (According
to Lemma 10.1.2, it would not change this definition if we used e.g., the
priority model instead.)

The class NC of languages consists of those languages L ⊆ {0, 1}∗ whose
characteristic function can be computed by an NC-program.

Remark. The goal of the introduction of the class NC is not to model prac-
tically implementable parallel computations. In practice, we can generally

10.2. The class NC 207

use much more than logarithmic time but (at least in the foreseeable future)
only on much fewer than polynomially many processors. The goal of the
notion is to describe those problems solvable with a polynomial number of
operations, with the additional property that these operations are maximally
parallelizable (in case of an input of size n, on the completely conflict-free
machine, logn steps are needed even to let all input bits have an effect on
the output).

Obviously, NC ⊆ P . It is not known whether equality holds here but the
answer is probably no.

Around the class NC, a complexity theory can be built similar to the one
around the class P. The NC-reduction of a language to another language
can be defined and, e.g., inside the class P, it can be shown that there are
languages that are P-complete, i.e., to which every other language in P is
NC-reducible. We will not deal with the details of this; rather, we confine
ourselves to some important examples.

Proposition 10.2.1. The adjacency-matrices of graphs containing a triangle
form a language in NC.

Algorithm 10.2.2. The NC-algorithm is essentially trivial. Originally, let
x[0] = 0. First, we determine the number n of points of the graph. Then
we instruct the processor with serial number i + jn + kn2 to check whether
the point triple (i, j, k) forms a triangle. If no then the processor halts. If
yes then it writes a 1 into the 0’th common cell and halts. Whether we use
the conflict-limiting or the priority model, we have x[0] = 1 at the end of
the computation if and only if the graph has a triangle. (Notice that this
algorithm makes O(1) steps.)

Our next example is less trivial, moreover, at the first sight, it is surprising:
the connectivity of graphs. The usual algorithms (breadth-first or depth-first
search) are namely strongly sequential: every step depends on the result of
the earlier steps. For the parallelization, we use a trick similar to the one we
used earlier for the proof of Savitch’s theorem (Theorem 4.2.4).

Proposition 10.2.3. The adjacency matrices of connected graphs form a
language in NC.

Algorithm 10.2.4. We will describe the algorithm on the conflict-limiting
model. Again, we instruct the processor with serial number i + jn + kn2

to watch the triple (i, j, k). If it sees two edges in the triple then it inserts
the third one. (If several processors want to insert the same edge then they
all want to write the same thing into the same cell and this is permitted.)
If we repeat this t times then, obviously, exactly those pairs of points will
be connected whose distance in the original graph is at most 2t. In this

208 10. Parallel algorithms

way, repeating O(log n) times, we obtain a complete graph if and only if the
original graph was connected.

Clearly, it can be similarly decided whether in a given graph, there is a
path connecting two given points, moreover, even the distance of two points
can be determined by a suitable modification of the above algorithm.

Exercise 10.2.1. Suppose we are given a graph G with vertices {1, 2, . . . , n}
and non-negative edge-lengths, c(uv). Define the n×n matrix A as A(i, i) =
0, A(i, j) = c(ij), if ij is an edge and A(i, j) = +∞ otherwise.

Consider the matrix-product where the product (of two elements) is re-
placed by addition and the addition (of the products of the pairs) is replaced
by the minimum operation. Show that if we compute An for this matrix
(which can be done in NC, similarly to (Lemma 3.1.2)), then we get the
shortest path for any pair of points.

Exercise 10.2.2. In Chapter 9 we have defined algebraic decision trees and
algebraic formula and their depth/length.

a) Suppose F is a length L algebraic formula, which contains only the
{+,−, ·} operations. Show that we can construct a 3 logL deep alge-
braic decision tree that computes F .

b) The same is true for Boolean formula and Boolean circuits of indegree 2.

c) Even if the algebraic formula F contains division, we can still construct
a 4 logL deep algebraic decision tree that computes F .

Exercise 10.2.3. a) Show that two length n sorted sequences can be
merged into an sorted sequence on the conflict-free model with n pro-
cessors in O(log n) steps. (Hint: merge the even and odd indexed sub-
sequences recursively.)

b) A length n sequence can be sorted on the conflict-free model with n
processors in O(log2 n) steps.

The next algorithm is maybe the most important tool of the theory of
parallel computations.

Theorem 10.2.5 (Csánky’s Theorem). The determinant of an arbitrary
integer matrix can be computed by an NC algorithm. Consequently, the in-
vertible matrices form an NC-language.

Algorithm 10.2.6. We present an algorithm proposed by Chistov. The idea
is now to try to represent the determinant by a suitable matrix power-series.
Let B be an n × n matrix and let Bk denote the k × k submatrix in its left
upper corner. Assume first that these submatrices Bk are not singular, i.e.,

10.2. The class NC 209

that their determinants are not 0. Then B is invertible and according to the
known formula for the inverse, we have

(B−1)nn = detBn−1/ detB

where (B−1)nn denotes the element standing in the right lower corner of the
matrix B−1. Hence

detB =
detBn−1

(B−1)nn
.

Continuing this, we obtain

detB =
1

(B−1)nn · (B−1
n−1)n−1,n−1 · · · (B−1

1)11
.

Let us write B in the form B = I − A where I = In is the n × n identity
matrix. Assuming, for a moment, that the elements of A are small enough,
the following series expansion holds:

B−1
k = Ik +Ak +A2

k + · · · ,

which gives
(B−1

k)kk = 1 + (Ak)kk + (A2
k)kk + · · · .

Hence

1

(B−1
k)kk

=
1

1 + (Ak)kk + (A2
k)kk + · · ·

=1− [(Ak)kk + (A2
k)kk + · · ·] + [(Ak)kk + (A2

k)kk + · · ·]2 − · · · ,

and hence

detB =

n
∏

k=1

(1− [(Ak)kk + (A2
k)kk + · · ·] + [(Ak)kk + (A2

k)kk + · · ·]2 − · · ·).

We cannot, of course, compute these infinite series composed of infinite series.
We claim, however, that it is enough to compute only n terms from each se-
ries. More exactly, let us substitute tA in place of A where t is a real variable.
For small enough t, the matrices Ik − tAk are certainly not singular and the
above series expansions hold. We gain, however, more. After substitution,
the formula looks as follows:

det(I − tA)

=

n
∏

k=1

(1 − [t(Ak)kk + t2(A2
k)kk + · · ·] + [t(Ak)kk + t2(A2

k)kk + · · ·]2 − · · ·).

210 10. Parallel algorithms

Now comes the decisive idea: the left-hand side is a polynomial of t of degree
at most n, hence from the power series on the right-hand side, it is enough to
compute only the terms of degree at most n. In this way, det(I− tA) consists
of the terms of degree at most n of the following polynomial:

F (t) =

n
∏

k=1

[1−
n
∑

j=0

(−
n
∑

m=1

tm(Am
k)kk)

j].

Now, however complicated the formula defining F (t) may seem, it can be
computed easily in the NC sense. Deleting from it the terms of degree higher
than n, we get a polynomial identical to det(I − tA). Also, as a polynomial
identity, our identity holds for all values of t, not only for the small ones,
and no nonsingularity assumptions are needed. Substituting t = 1 here, we
obtain detB.

We note that Mahajan and Vinay gave in 1997 a combinatorial algorithm
for computing the determinant that does not use division and thus can be
also used for computing the determinants of matrices over rings. This algo-
rithm can be also parallelized, using O(log2 n) time in the EREW (completely
conflict-free) model (with n6 processors).

Randomization for parallel machines is even more important than in the
sequential case. We define the randomized NC, or RNC, class of languages
similarly as the class BPP was defined. RNC consists of those languages L
for which there is a number c > 0 and a program computing, on each input
x ∈ {0, 1}∗, on the randomized PRAM machine, with O(|x|c) processors
(say, in a completely conflict-free manner), in time O(log |x|c), either a 0 or
a 1. If x ∈ L then the probability of the result 0 is smaller than 1/4, if x 6∈ L
then the probability of the result 1 is smaller than 1/4.

Using Theorem 5.1.3 with random substitutions, we arrive at the following
important application:

Corollary 10.2.7. The adjacency matrices of graphs with complete match-
ings form a language in RNC.

It must be noted that the algorithm only determines whether the graph
has a complete matching but it does not give the matching if it exists. This,
significantly harder, problem can also be solved in the RNC sense (by an
algorithm of Karp, Upfal and Wigderson).

Exercise 10.2.4. Consider the following problem. Given a Boolean circuit
and its input, compute its output. Prove that if this problem is in NC then
P=NC.

Chapter 11

Communication complexity

With many algorithmic and data processing problems, the main difficulty
is the transport of information between different processors. Here, we will
discuss a model which—in the simplest case of 2 participating processors—
attempts to characterize the part of complexity due to the moving of data.

Let us be given thus two processors, and assume that each of them knows
only part of the input. Their task is to compute some output from this; we
will only consider the case when the output is a single bit, i.e., they want to
determine some property of the (whole) input. We abstract from the time and
other costs incurred by the local computation of the processors; we consider
therefore only the communication between them. We would like to achieve
that they solve their task having to communicate as few bits as possible.
Looking from the outside, we will see that one processor sends a bit ε1 to
the other one; then one of them (maybe the other one, maybe the same one)
sends a bit ε2, and so on. At the end, both processors must “know” the bit
to be computed.

To make it more graphic, instead of the two processors, we will speak of
two players, Alice and Bob. Imagine that Alice lives in Europe and Bob
lives in New Zealand before the age of the internet; then the assumption that
the cost of communication dwarfs the cost of local computations is rather
realistic.

What is the algorithm in the area of algorithmic complexity is the proto-
col in the area of communication complexity. This means that we prescribe
for each player, for each stage of the game where his/her input is x and bits
ε1, . . . , εk were sent so far (including who sent them) whether the next turn
is his/her (this can only depend on the messages ε1, . . . , εk and not on x;
it must namely be also known to the other player to avoid conflicts), and if
yes then—depending on these—what bit must be sent. Each player knows

211

212 11. Communication complexity

this protocol, including the “meaning” of the messages of the other player (in
case of what inputs could the other one have sent it). We assume that both
players obey the protocol.

It is easy to give a trivial protocol: Let Alice send Bob the part of the input
known to her. Then Bob can already compute the end result and communi-
cate it to Alice using a single bit. We will see that this can be, in general,
far from the optimum. We will also see that in the area of communication
complexity, some notions can be formed that are similar to those in the area
of algorithmic complexity, and these are often easier to handle. But before,
we give a very simple example where the trivial protocol is not optimal. Later
we’ll see that indeed, for many of the simple communication tasks the trivial
protocol is best possible.

Suppose that both Alice and Bob have two bits, and they want to decide
whether the binary sum of each input is the same. The trivial protocol would
be that one of them, say Alice, sends her input to Bob, who then does all the
computation (not too hard) and returns a bit telling Alice the answer. But
of course, instead of sending both bits, it suffices to send the binary sum,
which saves one bit.

One can argue that in this example, the protocol is still the trivial one:
the only important information about Alice’s input is the binary sum of her
bits, so she does send Bob all but the redundant information she has.

11.1 Communication matrix and protocol-tree

Let Alice’s possible inputs be a1, . . . , an and Bob’s possible inputs b1, . . . , bm
(since the local computation is free it is indifferent for us how these are
coded). Let cij be the value to be computed for inputs ai and bj . The matrix
C = (cij)

n
i=1

m
j=1 is called the communication matrix of the problem in

question. This matrix completely describes the problem: both players know
the whole matrix C. Alice knows the index i of a row of C, while Bob knows
the index j of a column of C. Their task is to determine the element cij . The
trivial protocol is that e.g., Alice sends Bob the number i; this means ⌈logn⌉
bits. (If m < n then it is better, of course, to proceed the other way.)

Let us see first what a protocol means for this matrix. First of all, the
protocol must determine who starts. Suppose that Alice sends first a bit
ε1. This bit must be determined by the index i known to Alice; in other
words, the rows of C must be divided in two parts according to ε1 = 0 or
1. The matrix C is thus decomposed into two submatrices, C0 and C1. This
decomposition is determined by the protocol, therefore both players know it.
Alice’s message determines which one of C0 and C1 contains her row. From
now on therefore the problem has been narrowed down to the corresponding
smaller matrix.

11.1. Communication matrix and protocol-tree 213

The next message decomposes C0 and C1. If the sender is Bob then he
divides the columns into two classes; if it is Alice then she divides the rows
again. It is not important that the second message has the same “meaning”
in each case, i.e., that it divides the same rows [columns] in the matrices C0

and C1; moreover, it is also possible that it subdivides the rows of C0 and
the columns of C1 (Alice’s message “0” means that “I have more to say”, and
her message “1” that “it is your turn”).

Proceeding this way, we see that the protocol corresponds to a decompo-
sition of the matrix to ever smaller submatrices. In each “turn”, every actual
submatrix is divided into two submatrices either by a horizontal or by a
vertical split. (Such a decomposition into submatrices is called a guillotine-
decomposition.) It is important to note that rows and columns of the
matrix can be divided into two parts in an arbitrary way; their original order
plays no role.

When does this protocol stop? If the players have narrowed down the
possibilities to a submatrix C′ then this means that both know that the row
or column of the other one belongs to this submatrix. If from this, they can
tell the result in all cases then either all elements of this submatrix are 0 or
all are 1.

In this way, the determination of communication complexity leads to the
following combinatorial problem: in how many turns can we decompose a
given 0-1 matrix into matrices consisting of all 0’s and all 1’s, if in each
turn, every submatrix obtained so far can only be split in two, horizontally
or vertically? (If we obtain an all-0 or all-1 matrix earlier than the required
number of turns, we can stop splitting it. But sometimes, it will be more
useful to pretend that we keep splitting even in this case; formally, we agree
that an all-0 matrix consisting of 0 rows can be split from an all-0 matrix as
well as from an all-1 matrix.)

We can associate a binary tree to this process. Every point of the tree
is a submatrix of C. The root is the matrix C, its left child is C0 and its
right child is C1. The two children of every matrix are obtained by dividing
its rows or columns into two classes. The leaves of the tree are all-0 or all-1
matrices.

Following the protocol, the players move on this tree from the root to some
leaf. If they are in some node then whether its children arise by a horizontal
or vertical split determines who sends the next bit. The bit is 0 or 1 according
to whether the row [column] of the sender is in the left or right child of the
node. If they arrive to a leaf then all elements of this matrix are the same and
this is the answer to the communication problem. The time requirement
of the protocol is the depth of this tree. The communication complexity
of matrix C is the smallest possible time requirement of all protocols solving
it. We denote it by κ(C).

214 11. Communication complexity

0 1 0 1

A

B A

0 1

0 1 10

0 1 1 0

0 1 1 0

0 0 0 0

1 1 1 1

0 1 1 0

0 1 1 0

0 0 0 0

1 1 1 1

0 1 1 0

0 1 1 0

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1
0 0 0 0

1 1 1 1

0 1 1 0

0 1 1 0

0 0 0 0

1 1 1 1

0 1 1 0

0 1 1 0

0 0 0 0

1 1 1 1

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

Figure 11.1.1: Protocol-tree

Note that if we split each matrix in each turn (i.e., if the tree is a complete
binary tree) then exactly half of its leaves is all-0 and half is all-1. This follows
from the fact that we have split all matrices of the penultimate “generation”
into an all-0 matrix and an all-1 matrix. In this way, if the depth of the tree
is t then among its leaves, there are 2t−1 all-1 (and just as many all-0). If we
stop earlier on the branches where we arrive earlier at an all-0 or all-1 matrix
it will still be true that the number of all-1 leaves is at most 2t−1 since we
could continue the branch formally by making one of the split-off matrices
“empty”.

This observation leads to a simple but important lower bound on the
communication complexity of the matrix C. Let rk(C) denote the rank of
matrix C.

Lemma 11.1.1.

κ(C) ≥ 1 + log rk(C).

Proof. Consider a protocol-tree of depth κ(C) and let L1, . . . , LN be its
leaves. These are submatrices of C. Let Mi denote the matrix (having the
same size as C) obtained by writing 0 into all elements of C not belonging
to Li. By the previous remark, we see that there are at most 2κ(C)−1 non-0
matrices Mi; it is also easy to see that all of these have rank 1. Now,

C =M1 +M2 + · · ·+MN ,

11.1. Communication matrix and protocol-tree 215

and thus, using the well-known fact from linear algebra that the rank of the
sum of matrices is not greater than the sum of their rank,

rk(C) ≤ rk(M1) + · · ·+ rk(MN) ≤ 2κ(C)−1.

This implies the lemma.

Corollary 11.1.2. If the rows of matrix C are linearly independent then the
trivial protocol is optimal.

Consider a simple but important communication problem to which this
result is applicable and which will be an important example in several other
aspects.

Example 11.1.1. Both Alice and Bob know some 0-1 sequence of length n;
they want to decide whether the two sequences are equal.

The communication matrix belonging to the problem is obviously a 2n×2n

identity matrix. Since its rank is 2n no protocol is better for this problem
than the trivial (n+ 1 bit) one.

By another, also simple reasoning, we can also show that almost this many
bits must be communicated not only for the worst input but for almost all
inputs:

Theorem 11.1.3. Consider an arbitrary communication protocol deciding
about two 0-1-sequence of length n whether they are identical, and let h > 0.
Then the number of sequences a ∈ {0, 1}n such that the protocol uses fewer
than h bits on input (a, a) is at most 2h.

Proof. For each input (a, b), let J(a, b) denote the “record” of the protocol,
i.e., the 0-1-sequence formed by the bits sent to each other. We claim that
if a 6= b then J(a, a) 6= J(b, b); this implies the theorem trivially since the
number of < h-length records is at most 2h.

Suppose that J(a, a) = J(b, b) and consider the record J(a, b). We show
that this is equal to J(a, a).

Suppose that this is not so, and let the i-th bit be the first one in which
they differ. On the inputs (a, a), (b, b) and (a, b) not only the first i − 1
bits are the same but also the direction of communication. Alice namely
cannot determine in the first i − 1 steps whether Bob has the sequence a or
b, and since the protocol determines for her whether it is her turn to send, it
determines this the same way for inputs (a, a) and (a, b). Similarly, the i-th
bit will be sent in the same direction on all three inputs, say, Alice sends it to
Bob. But at this time, the inputs (a, a) and (a, b) seem to Alice the same and
therefore the i-th bit will also be the same, which is a contradiction. Thus,
J(a, b) = J(a, a).

216 11. Communication complexity

The protocol terminates on input (a, b) by both players knowing that the
two sequences are different. But from Alice’s point of view, her own input as
well as the communication are the same as on input (a, a), and therefore the
protocol comes to wrong conclusion on that input. This contradiction proves
that J(a, a) 6= J(b, b).

One of the main applications of communication complexity is that some-
times we can get a lower bound on the number of steps of algorithms by
estimating the amount of communication between certain data parts. To il-
lustrate this we give another proof for part (b) of Theorem 1.2.3. Recall that
a palindrome is a string with the property that it is equal to its reverse.
Now we will prove that every one-tape Turing machine needs Ω(n2) steps to
decide about a sequence of length 2n whether it is a palindrome.

Proof. Consider an arbitrary one-tape Turing machine deciding this ques-
tion. Let us seat Alice and Bob in such a way that Alice sees cells n, n −
1, . . . , 0,−1, . . . of the tape and Bob sees its cells n+1, n+2, . . .; we show the
structure of the Turing machine to both of them. At start, both see therefore
a string of length n and must decide whether these strings are equal (Alice’s
sequence is read in reverse order).

The work of the Turing machine offers a simple protocol to Alice and Bob:
Alice mentally runs the Turing machine as long as the scanning head is on
her half of the tape, then she sends a message to Bob: “the head moves over
to you with this and this internal state”. Then Bob runs it mentally as long
as the head is in his half, and then he tells Alice the internal state with which
the head must return to Alice’s half, etc. So, if the head moves over k times
from one half to the other one then they send each other k · log |Γ| bits (where
Γ is the set of states of the machine). At the end, the Turing machine writes
the answer into cell 0 and Alice will know whether the word is a palindrome.
For the price of 1 bit, she can let Bob also know this.

According to Theorem 11.1.3, we have therefore at most 2n/2 palindromes
with k log |Γ| < n/2, i.e., for most inputs, the head passed between the cells
n and (n+1) at least cn times, where c = 1/(2 log |Γ|). This is still only Ω(n)
steps but a similar reasoning shows that for all h ≥ 0, with the exception of
2h · 2n/2 inputs, the machine passes between cells (n − h) and (n − h + 1)
at least cn times. For the sake of proving this, consider a palindrome α of
length 2h and write in front of it a sequence β of length n−h and behind it a
sequence γ of length n− h. The sequence obtained this way is a palindrome
if and only if β = γ−1 where we denoted by γ−1 the inversion of γ. By
Theorem 11.1.3 and the above reasoning, for every α there are at most 2n/2

strings β for which on input βαβ−1, the head passes between cells n− h and
n − h + 1 fewer than cn times. Since the number of α’s is 2h the assertion
follows.

11.2. Examples 217

If we add up this estimate for all h with 0 ≤ h ≤ n/2 the number of
exceptions is at most

2n/2 + 2 · 2n/2 + 4 · 2n/2 + · · ·+ 2n/2−1 · 2n/2 < 2n,

hence there is an input on which the number of steps is at least (n/2) · (cn) =
Ω(n2).

Exercise 11.1.1. Show that the following communication problems cannot
be solved with fewer than the trivial number of bits (n + 1): The inputs of
Alice and Bob are two subsets of an n-element set, X and Y . They must
decide whether

• X and Y are disjoint;

• |X ∩ Y | is even.

11.2 Examples

We give some examples when the trivial protocol (Alice sending all her infor-
mation to Bob) is not optimal. The examples are not simple, demonstrating
how carefully planned protocols can save a lot.

Example 11.2.1. There is a tree T with n nodes, known to both players.
Alice has a subtree TA and Bob has a subtree TB. They want to decide
whether the subtrees have a common vertex.

The trivial protocol uses obviously logM +1 bits where M is the number
of subtrees. M can even be greater than 2n−1 if e.g., T is a star. So the trivial
protocol may take n bits. (For different subtrees, Alice’s message must be
different. If Alice gives the same message for subtrees TA and T ′

A and, say,
TA 6⊆ T ′

A then TA has a vertex v that is not in T ′
A; if Bob’s subtree consists

of the single point v then he cannot find the answer based on this message.)
Consider, however, the following protocol: Alice chooses a vertex x ∈

V (TA) and sends it to Bob (we reserve a special message for the case when
TA is empty; in this case, they will be done). If x is also a vertex of the tree
TB then they are done (Bob has a special message for this case). If not, then
Bob determines the point of TB closest to x (this is the node where the path
from x to any node of TB hits TB). He sends this node y to Alice.

Now if y is in TA, then Alice knows that the two trees have a common
point; if y is not in TA then the two trees have no common points at all. She
sends one bit to tell the result.

This protocol uses only 1 + 2⌈log(n+ 1)⌉ bits (see Figure 11.2).

218 11. Communication complexity

Alice’s tree

Bob’s tree

x y

Figure 11.2.1: Protocol for disjointness of subtrees

Exercise 11.2.1. Prove that in Example 11.2.1, any protocol requires at
least logn bits.

Exercise∗ 11.2.2. Refine the protocol in Example 11.2.1 that it uses only
logn+ log logn+ 1 bits.

Example 11.2.2. Given is a graph G with n points. Alice knows a vertex
set SA spanning a complete subgraph and Bob knows an independent vertex
set SB in the graph. They want to decide whether the two subgraphs have a
common vertex.

If Alice wants to give the complete information to Bob about the vertex
set known to her then logM bits would be needed, where M is the number
of complete subgraphs. This can be, however, even 2n/2, i.e., (in the worst
case) Alice must use Ω(n) bits. The situation is similar with Bob.

The following protocol is significantly more economical. Alice checks
whether the set SA has a vertex with degree at most n/2 − 1. If there is
one, then she sends to Bob a 1 and then the name of such a vertex v. Then
both of them know that Alice’s set consists only of v and some of its neigh-
bors, i.e., they reduced the problem to a graph with n/2 vertices.

If every node of SA has degree larger than n/2 − 1 then Alice sends to
Bob only a 0. Then Bob checks whether the set SB has a vertex with degree
larger than n/2 − 1. If it has then it sends Alice a 1 and the name of such
a node w. Similarly to the foregoing, after this both of them will know that
besides w, the set SB can contain only vertices that are not neighbors of w,
and they thus again succeeded in reducing the problem to a graph with at
most (n+ 1)/2 vertices.

Finally, if every vertex of SB has degree at most n/2 − 1, Bob sends a 0
to Alice. After this, they know that their sets are disjoint.

11.3. Non-deterministic communication complexity 219

The above turn uses at most O(log n) bits and since it decreases the num-
ber of vertices of the graph to half, it will be repeated at most logn times.
Therefore, the complete protocol is only O((log n)2). More careful computa-
tion shows that the number of used bits is at most ⌈logn⌉(2 + ⌈logn⌉)/2.

11.3 Non-deterministic communication
complexity

As with algorithms, the non-deterministic version plays an important role
also with protocols. This can be defined—in a fashion somewhat analogous
to the notion of “witness”, or “testimony”—in the following way. We want
that for every input of Alice and Bob for which the answer is 1, a “superior
being” can reveal a short 0-1 sequence convincing both Alice and Bob that
the answer is indeed 1. They do not have to believe the revelation of the
“superior being” but if they signal anything at all this can only be whether
on their part they accept the proof or not. This non-deterministic protocol
consists therefore of certain possible “revelations” z1, . . . , zn ∈ {0, 1}t all of
which are acceptable for certain inputs of Alice and Bob. For a given pair of
inputs, there is an zi acceptable for both of them if and only if for this pair
of inputs, the answer to the communication problem is 1. The parameter t,
the length of the zi’s is the complexity of the protocol. Finally, the non-
deterministic communication complexity of matrix C is the minimum
complexity of all non-deterministic protocols applicable to it; we denote this
by κND(C)

Example 11.3.1. In Example 11.1.1, if the superior being wants to prove
that the two strings are different it is enough for her to declare: “Alice’s i-th
bit is 0 while Bob’s is not.” This is—apart from the textual part, which be-
longs to the protocol—only ⌈logn⌉+1 bits, i.e., much less than the complexity
of the optimal deterministic protocol.

We remark that even the superior being cannot give a proof that two words
are equal in fewer than n bits, as we will see right away.

Example 11.3.2. Suppose that Alice and Bob know a convex polygon each
in the plane, and they want to decide whether the two polygons have a
common point.

If the superior being wants to convince the players that their polygons are
not disjoint she can do this by revealing a common point. Both players can
check that the revealed point indeed belongs to their polygon.

We can notice that in this example, the superior being can also easily
prove the negative answer: if the two polygons are disjoint then it is enough

220 11. Communication complexity

to reveal a straight line such that Alice’s polygon is on its left side, Bob’s
polygon is on its right side. (We do not discuss here the exact number of bits
in the inputs and the revelations.)

Let z be a possible revelation of the superior being and let Hz be the set
of all possible pairs (i, j) for which z “convinces” the players that cij = 1.
We note that if (i1, j1) ∈ Hz and (i2, j2) ∈ Hz then (i1, j2) and (i2, j1) also
belong to Hz : since (i1, j1) ∈ Hz, Alice, possessing i1, accepts the revelation
z; since (i2, j2) ∈ Hz, Bob, possessing j2, accepts the revelation z; thus, when
they have (i1, j2) both accept z, hence (i1, j2) ∈ Hz.

We can therefore also consider Hz as a submatrix of C consisting of all 1’s.
The submatrices belonging to the possible revelations of a non-deterministic
protocol cover the 1’s of the matrix C since the protocol must apply to
all inputs with answer 1 (it is possible that a matrix element belongs to
several such submatrices). The 1’s of C can therefore be covered with at
most 2κND(C) all-1 submatrices.

Conversely, if the 1’s of the matrix C can be covered with 2t all-1 sub-
matrices then it is easy to give a non-deterministic protocol of complexity
t: the superior being reveals only the number of the submatrix covering the
given input pair. Both players verify whether their respective input is a row
or column of the revealed submatrix. If yes then they can be convinced that
the corresponding matrix element is 1. We have thus proved the following
statement:

Lemma 11.3.1. κND(C) is the smallest natural number t for which the 1’s
of the matrix C can be covered with 2t all-1 submatrices.

In the negation of Example 11.3.1, the matrix C is the 2n × 2n identity
matrix. Obviously, only the 1×1 submatrices of this are all-1, the covering of
the 1’s requires therefore 2n such submatrices. Thus, the non-deterministic
complexity of this problem is also n.

Let κ(C) = s. Then C can be decomposed into 2s submatrices half of
which are all-0 and half are all-1. According to Lemma 11.3.1, the non-
deterministic communication complexity of C is therefore at most s − 1.
Hence

κND(C) ≤ κ(C)− 1.

Example 11.3.1 shows that there can be a big difference between the two
quantities.

Let C denote the matrix obtained from C by changing all 1’s to 0 and all
0’s to 1. Obviously, κ(C) = κ(C). Example 11.3.1 also shows that κND(C)
and κND(C) can be very different. On the basis of the previous remarks, we
have

max{1 + κND(C), 1 + κND(C)} ≤ κ(C).

11.3. Non-deterministic communication complexity 221

The following important theorem shows that here, already, the difference
between the two sides of the inequality cannot be too great.

Theorem 11.3.2 (Aho-Ullman-Yannakakis).

κ(C) ≤ (κND(C) + 2) · (κND(C) + 2).

We will prove a sharper inequality. In case of an arbitrary 0-1 matrix C,
let ̺(C) denote the largest number t for which C has a t × t submatrix in
which—after a suitable rearrangement of the rows and columns—there are
all 1’s in the main diagonal and all 0’s everywhere above the main diagonal.
Obviously,

̺(C) ≤ rk(C),

and Lemma 11.3.1 implies

log ̺(C) ≤ κND(C).

The following inequality therefore implies Theorem 11.3.2.

Theorem 11.3.3.

κ(C) ≤ 2 + log ̺(C)(2 + κND(C))

unless C is the all zero matrix.

Proof. We use induction on ̺(C). If ̺(C) = 1 then the protocol is trivial.
Let ̺(C) > 1 and p = κND(C). Then the 0’s of the matrix C can be covered
with 2p all-0 submatrices, say, M1, . . . ,M2p . We want to give a protocol that
decides the communication problem with at most (p+ 2) log ̺(C) bits. The
protocol fixes the submatrices Mi, this is therefore known to the players.

For every submatrix Mi, let us consider the matrix Ai formed by the rows
of C intersecting Mi and the matrix Bi formed by the columns of C inter-
secting Mi. The basis of the protocol is the following, very easily verifiable,
statement.

Claim 11.3.4.
̺(Ai) + ̺(Bi) ≤ ̺(C).

Now, we can describe the following protocol.
Alice checks whether there is an index i for which Mi intersects her row

and for which ̺(Ai) ≤ 1
2̺(C). If yes, then she sends “1” and the index i to

Bob, with this the first phase of the protocol has ended. If not, then she sends
“0”. Now, Bob checks whether there is an index i for which Mi intersects his
column and ̺(Bi) ≤ 1

2̺(C). If yes, then he sends a “1” and the index i to
Alice. Else he sends “0”. Now the first phase has ended in any case.

222 11. Communication complexity

If either Alice or Bob find a suitable index in the first phase, then by the
communication of at most p + 2 bits they have restricted the problem to a
matrix C′ (= Ai or Bi) for which ̺(C′) ≤ 1

2̺(C). Hence the theorem follows
by induction.

If both players sent “0” in the first phase then they can finish the protocol:
the answer is “1”. Indeed, if there was a 0 in the intersection of Alice’s row
and Bob’s column then this would belong to some submatrix Mi. However,
for these submatrices, we have on the one hand

̺(Ai) >
1

2
̺(C)

(since they did not suit Alice), on the other hand

̺(Bi) >
1

2
̺(C)

since they did not suit Bob. But this contradicts the above claim.

It is interesting to formulate another corollary of the above theorem (com-
pare it with Lemma 11.1.1):

Corollary 11.3.5.

κ(C) ≤ 2 +
(

log rk(C)
)(

κND(C) + 2)

unless C is the all zero matrix.

To show the power of Theorems 11.3.2 and 11.3.3 consider the examples
treated in Section 11.2. If C is the matrix corresponding to Example 11.2.1
(in which 1 means that the subtrees are disjoint) then κND(C) ≤ ⌈logn⌉
(it is sufficient to name a common vertex). It is also easy to obtain that
κND(C) ≤ 1+ ⌈log(n− 1)⌉ (if the subtrees are disjoint then it is sufficient to
name an edge of the path connecting them, together with telling that after
deleting it, which component will contain TA and which one TB). It can
also be shown that the rank of C is 2n. Therefore, whichever of Theorem
11.3.2 or 11.3.3 we use, we get a protocol using O((log n)2) bits. This is much
better than the trivial one but is not as good as the special protocol treated
in Section 11.2.

Let now C be the matrix corresponding to Example 11.2.2. It is again true
that κND(C) ≤ ⌈logn⌉, for the same reason as above. It can also be shown
that the rank of C is exactly n. From this it follows, by Theorem 11.3.3, that
κ(C) = O((log n)2) which is (apart from a constant factor) the best know
result. It must be mentioned that what is known for the value of κND(C), is
only the estimate κND = O((log n)2) coming from the inequality κND ≤ κ.

11.4. Randomized protocols 223

Remark. We can continue dissecting the analogy of algorithms and protocols
a little further. Let us be given a set H of (for simplicity, quadratic) 0-
1 matrices. We say that H ∈ Pcomm if the communication complexity of
every matrix C ∈ H is not greater than a polynomial of log logN where
N is the number of rows of the matrix. (I.e., if the complexity is a good
deal smaller than the trivial 1 + logN .) We say that H ∈ NPcomm if the
non-deterministic communication complexity of every matrix C ∈ H is not
greater than a polynomial of log logN . We say that H ∈ co−NPcomm if the
matrix set {C : C ∈ H} is in NPcomm. Then Example 11.3.1 shows that

Pcomm 6= NPcomm,

and Theorem 11.3.2 implies

Pcomm = NPcomm ∩ co−NPcomm.

Exercise 11.3.1. Prove claim 11.3.4.

Exercise 11.3.2. Show that in Theorems 11.3.2 and 11.3.3 and in Corollary
11.3.5, with more care, the factor (2+κND) can be replaced with (1+κND).

11.4 Randomized protocols

In this part, we give an example showing that randomization can decrease the
complexity of protocols significantly. We consider again the problem whether
the inputs of the two players are identical. Both inputs are 0-1 sequences of
length n, say x and y. We can also view these as natural numbers between 0
and 2n − 1. As we have seen, the communication complexity of this problem
is n+ 1.

If the players are allowed to choose random numbers then the question can
be settled much easier, by the following protocol. The only change on the
model is that both players have a random number generator; these generate
independent bits (it does not restrict generality if we assume that the bits of
the two players are independent of each other, too). The bit computed by
the two players will be a random variable; the protocol is good if this is equal
to the “true” value with probability at least 2/3.
Protocol: Alice chooses a random prime number p in the interval 1 < p < n
and divides x by p with remainder. Let the remainder be r; then Alice sends
Bob the numbers p and r. Bob checks whether y ≡ r (mod p). If not, then
he knows that x 6= y. If yes, then he concludes that x = y.

First we note that this protocol uses only 2 logN+1 bits since 1 ≤ r ≤ p ≤
N . The problem is that it may be wrong; let us find out in what direction
and with what probability. If x = y, then it gives always the right result.

224 11. Communication complexity

If x 6= y, then it is conceivable that x and y give the same remainder at
division by p and so the protocol arrives at a wrong conclusion. This occurs
if p divides the difference d = |x− y|. Let p1, . . . , pk be the prime divisors of
d, then

d ≥ p1 · · · pk ≥ 2 · 3 · 5 · · · · · q,
where q is the k-th prime number.

It is a known number-theoretical fact that for large enough q we have, say,

2 · 3 · 5 · · · · · q > 2q.

Since d < 2n it follows from this that q < n and therefore k ≤ π(n) (where
π(n) is the number of primes up to n). Hence the probability that we have
chosen a prime divisor of d can be estimated as follows:

P(p divides d) =
k

π(N)
≤ π(n)

π(N)
.

Now, according to the prime number theorem, we have π(n) ≈ n/ logn and
so if we choose N = cn then the above bound is asymptotically 1/c, i.e., it
can be made arbitrarily small with the choice of c. At the same time, the
number of bits to be transmitted is only 2 logN + 1 = 2 logn+ constant.

Remark. The use of randomness does not help in every communication
problem this much. We have seen in the exercises that determining the
disjointness or the parity of the intersection of two sets behaves, from the
point of view of deterministic protocols, as the decision of the identity of
0-1 sequences. These problems behave, however, already differently from the
point of view of protocols that also allow randomization: Chor and Goldreich
have shown that Ω(n) bits are needed for the randomized computation of the
parity of intersection, and Kalyanasundaram and Schnittger proved similar
lower bound for the randomized communication complexity of the decision
of disjointness of two sets.

Chapter 12

An application of

complexity: cryptography

The complexity of a phenomenon can be the main obstacle of exploring it.
Our book—we hope—proves that complexity is not only an obstacle to re-
search but also an important and exciting subject. It goes, however, beyond
this: it has applications where it is precisely the complexity of a phenomenon
that is exploited. We have discussed the problem of generating pseudorandom
numbers in Chapter 7. This chapter treats another such subject: cryptog-
raphy, i.e., the science of secret codes. It was the application of the results
of complexity theory that elevated secret codes beyond the well-known (mil-
itary, intelligence) applications, and made them one of the most important
ingredient of computer security, electronic trade, internet etc.

12.1 A classical problem

Sender wants to send a message x to Receiver (where x is e.g., a 0-1-sequence
of length n). The goal is that when the message gets into the hands of any
unauthorized third party, she should not understand it. For this, we encode
the message, which means that instead of the message, Sender sends a code
y of it, from which the receiver can recompute the original message but the
unauthorized eavesdropper cannot. For this, we use a key d that is (say) also
a 0-1-sequence of length n. Only Sender and Receiver know this key.

Thus, Sender computes a “code” y = f(x, d) that is also a 0-1-sequence
of length n. We assume that for all d, f(·, d) is a bijective mapping of
{0, 1}n to itself. Then f−1(·, d) exists and thus Receiver, knowing the key d,

225

226 12. An application of complexity: cryptography

can reconstruct the message x. The simplest, frequently used function f is
f(x, d) = x⊕ d (bitwise addition modulo 2).

Remark. This so-called one-time pad method is very safe. It was used during
World War II for communication between the American President and the
British Prime Minister. Its disadvantage is that it requires a very long key.
It can be expensive to make sure that Sender and Receiver both have such
a common key; but note that the key can be sent at a safer time and by a
completely different method than the message.

12.2 A simple complexity-theoretic model

Let us look at a problem now that has—apparently—nothing to do with the
above one. From a certain bank, we can withdraw money using an ATM.
The client types his name or account number (in practice, he inserts a card
on which these data are stored) and a password. The bank’s computer checks
whether this is indeed the client’s password. If this checks out, the automaton
hands out the desired amount of money. In theory, only the client knows this
password (it is not written on his card!), so if he takes care that nobody else
can find it out, then this system provides complete security.

The problem is that the bank must also know the password and therefore
a bank employee can abuse it. Can one design a system in which it is im-
possible to figure out the password, even with the knowledge of the complete
password-checking program? This seemingly self-contradictory requirement
is satisfiable!

Here is a solution (not a very efficient one, and certainly never used in
practice, but one that illustrates the idea how complexity theory enters this
field). The client takes n nodes numbered from 1 to n, draws in a random
Hamiltonian circuit and then adds arbitrary additional edges. He remembers
the Hamiltonian circuit; this will be his password. He gives the whole graph
to the bank (without marking the Hamiltonian circuit in it).

If somebody shows up at the bank in the name of the client and gives a
set of edges on the n nodes as her password, the bank checks it whether it is
a Hamiltonian circuit of the graph stored there. If so, the password will be
accepted; if not, it will be rejected.

Now it seems that we have made it easier to impersonate our client: the
impostor does not have to know the password (the particular Hamiltonian
circuit); she can give any other Hamiltonian circuit of the client’s graph. But
note that even if she learns the graph, she must still solve the problem of
finding a Hamiltonian circuit in a graph. And this is NP-hard!

Remarks. 1. Instead of the Hamiltonian circuit problem, we could have
based the system on any other NP-complete problem.

12.3. Public-key cryptography 227

2. We glossed over a difficult question: how many more edges should the
client add to the graph and how? The problem is that the NP-completeness
of the Hamiltonian circuit problem means only that its solution is hard in
the worst case. We don’t know how to construct one graph in which there is
a Hamiltonian circuit but it is hard to find.

It is a natural idea to try to generate the graph by random selection. If
we chose it randomly from among all n-point graphs then it can be shown
that in it, with large probability, it is easy to find a Hamiltonian circuit.
If we chose a random one among all n-point graphs with m edges then the
situation is similar both with too large m and with too small m. The case
m = n logn at least seems hard. In some cases, one can show that certain
randomized constructions yield instances of NP-hard problems that are hard
with high probability (in the sense that if one could solve a random instance
in polynomial time with non-negligible probability, then we could solve all
instances in randomized polynomial time). These studies are beyond the
scope of this book.

12.3 Public-key cryptography

In this section, we describe a system that improves on the methods of classical
cryptography in several points. Let us note first of all that the system intends
to serve primarily civil rather than military goals. For using electronic mail,
in particular, if we use it for electronic commerce, we must recreate some tools
of traditional correspondence like envelope, signature, company letterhead,
etc.

The system has N ≥ 2 participants. Every participant has a public key ei
(she will publish it e.g., in a phone-book-like directory) and a secret key di
known to herself only. There is, further, a publicly known encoding/decoding
function that computes from every message x and (secret or public) key e a
message f(x, e). (The message x and its code must come from some easily
specifiable set H ; this can be e.g., {0, 1}n but can also be the set of residue
classes modulo m. We assume that the message itself contains the names
of the sender and receiver also in “human language”.) For every x ∈ H and
every i with 1 ≤ i ≤ N , we must have

f(f(x, ei), di) = f(f(x, di), ei) = x. (12.3.1)

If participant i wants to send a message to j then she sends the message
y = f(f(x, di), ej) instead. From this, j can compute the original message
by the formula x = f(f(y, dj), ei).

For this system to be usable, trivially it must satisfy

(C1) f(x, ei) can be computed efficiently from x and ei.

228 12. An application of complexity: cryptography

The security of the system will be guaranteed by

(C2) f(x, di) cannot be computed efficiently even in the knowledge of x, ei
and an arbitrary number of dj1 , . . . , djh (jr 6= i).

By “efficient”, we mean polynomial time, but the system makes sense under
other resource-bounds too. A function f with the above properties will be
called a trapdoor function.

Condition (C1) guarantees that if participant i sends a message to par-
ticipant j then she can encode it in polynomial time and the addressee can
decode it in polynomial time. Condition (C2) can be interpreted to say that
if somebody encoded a message x with the public key of a participant i and
then she lost the original then no coalition of the participants can restore the
original (efficiently) if i is not among them. This condition provides the “se-
curity” of the system. It implies, besides the classical requirement, a number
of other security conditions.

Proposition 12.3.1. Only j can decode a message addressed to j.

Proof. Assume that a group k1, . . . , kr of unauthorized participants finds out
the message f(f(x, di), ej), and knows even who sent it to whom. Suppose
that they can compute x efficiently from this. Then k1, . . . , kr and i together
could compute x also from f(x, ej). Let, namely, z = f(x, ej); then k1, . . . , kr
and i knows the message f(x, ej) = f(f(z, di), ej) and thus using the method
of k1, . . . , kj , can compute z. But from this, they can compute x by the
formula x = f(z, di), which contradicts condition (C2).

The following can be verified by similar reasoning:

Proposition 12.3.2. Nobody can forge a message in the name of i, i.e.,
participant j receiving a message that he can successfully decode using the
public key of i (and his own private key), can be sure that the message could
have been sent only by i.

Proposition 12.3.3. j can prove to a third person (e.g., in a court of justice)
that i has sent the given message; in the process, the secret elements of the
system (the keys di) need not be revealed.

Proposition 12.3.4. j cannot change the message (and have it accepted
e.g., in a court as coming from i) or send it in the name of i to somebody
else.

It is not at all clear, of course, whether trapdoor functions exists. Several
such functions have been proposed; many of the proposed systems turned
out to be insecure later on – the corresponding complexity conditions were
not true.) In the next section, we describe one such system that is one of the
earliest, and is most widely used (and of course, to our current knowledge, is
secure).

12.4. The Rivest–Shamir–Adleman code (RSA code) 229

12.4 The Rivest–Shamir–Adleman code

(RSA code)

In a simpler version of this system (in its abbreviated form, the RSA code),
the “post office” generates two n-digit prime numbers, p and q for itself, and
computes the number m = pq. It publishes this number (but the prime
decomposition remains secret!). Then it generates, for each subscriber, a
number ei with 1 ≤ ei < m that is relatively prime to (p − 1) and (q − 1).
(It can do this by generating a random ei between 0 and (p − 1)(q − 1)
and checking by the Euclidean algorithm whether it is relatively prime to
(p − 1)(q − 1). If it is not, it tries a new number. It is easy to see that
after an expected number of logn trials, it finds a good number ei with high
probability.) Then, using the Euclidean algorithm, it finds a number di with
1 ≤ di < m such that

eidi ≡ 1 (mod (p− 1)(q − 1)).

(here (p − 1)(q − 1) = ϕ(m), the number of positive integers smaller than
m and relatively prime to it). The public key is the number ei, the secret
key is the number di. The message x itself is considered a natural number
with 0 ≤ x < m (if it is longer then it will be cut into pieces). The encoding
function is defined by the formula

f(x, e) = xe (mod m) 0 ≤ f(x, e) < m.

The same formula serves for decoding, only with d in place of e.
The inverse relation between coding and decoding (formula 12.3.1) follows

from the “little” Fermat theorem. By definition,

eidi = 1+ ϕ(m)r = 1 + r(p− 1)(q − 1)

where r is a natural number. Thus, if (x, p) = 1 then

f(f(x, ei), di) ≡ (xei)di = xeidi = x(xp−1)r(q−1) ≡ x (mod p).

On the other hand, if p|x then obviously

xeidi ≡ 0 ≡ x (mod p).

Thus
xeidi ≡ x (mod p)

holds for all x. It similarly follows that

xeidi ≡ x (mod q),

230 12. An application of complexity: cryptography

and hence
xeidi ≡ x (mod m).

Since both the first and the last number are between 0 and m− 1 it follows
that they are equal, i.e., f(f(x, ei), di) = x.

It is easy to check condition (C1): knowing x, ei and m, the remainder of
xei after division by m can be computed in polynomial time, as we have seen
it in Chapter 3. Condition (C2) holds only in the following, weaker form:

(C2’) f(x, di) cannot be computed efficiently from the knowledge of x and
ei.

This condition can be formulated to say that with respect to a composite
modulus, extracting the ei-th root cannot be accomplished in polynomial
time without knowing the prime decomposition of the modulus. We cannot
prove this condition (even with the hypothesis P6=NP) but at least it seems
true according to the present state of number theory.

Several objections can be raised against the above simple version of the
RSA code. First of all, the post office can decode every message, since it
knows the numbers p, q and the secret keys di. But even if we assume that
this information will be destroyed after setting up the system, unauthorized
persons can still misuse the system. In fact, Every participant of the system
can solve any message sent to any other participant. (This does not contradict
condition (C2’) since participant j of the system knows, besides x and ei, also
the key dj .)

Indeed, consider participant j and assume that she got her hands on the
message z = f(f(x, di), ek) sent to participant k. Let y = f(x, di). Par-
ticipant j solves the message not meant for her as follows. She computes a
factoring u · v of (ejdj − 1), where (u, ek) = 1 while every prime divisor of v
also divides ek. To do this, she computes, by the Euclidean algorithm, the
greatest common divisor v1 of ek and ejdj−1, then the greatest common divi-
sor v2 of ek and (ejdj − 1)/v1, then the greatest common divisor v3 of ek and
(ejdj−1)/(v1v2), etc. This process terminates in at most t = ⌈log(ejdj − 1)⌉
steps, i.e., vt = 1. Then v = v1 · · · vt and u = (ejdj − 1)/v gives the desired
factoring.

Notice that (ϕ(m), ek) = 1 and therefore (ϕ(m), v) = 1.
Since ϕ(m)|ejdj − 1 = uv, it follows that ϕ(m)|u. Since (u, ek) = 1, there

are natural numbers s and t with sek = tu+ 1. Then

zs ≡ ysek = y(yu)t ≡ y (mod m)

and hence
x ≡ yei ≡ zeis.

Thus, participant j can also compute x.

12.4. The Rivest–Shamir–Adleman code (RSA code) 231

Exercise 12.4.1. Show that even if all participants of the system are honest
an outsider can cause harm as follows. Assume that the outsider gets two
versions of one and the same letter, sent to two different participants, say
f(f(x, di), ej) and f(f(x, di), ek) where (ej , ek) = 1 (with a little luck, this
will be the case). Then he can reconstruct the text x.

Now we describe a better version of the RSA code. Every participant
generates two n-digit prime numbers, pi and qi and computes the number
mi = piqi. Then she generates for herself a number ei with 1 ≤ ei < mi

relatively prime to (pi − 1) and (qi − 1). With the help of the Euclidean
algorithm, she finds a number di with 1 ≤ di < mi for which

eidi ≡ 1 (mod (pi − 1)(qi − 1)).

The public key consists of the pair (ei,mi) and the secret key of the pair
(di,mi).

The message itself will be considered a natural number. If 0 ≤ x < mi

then the encoding function will be defined, as before, by the formula

f(x, ei,m) ≡ xei (mod mi), 0 ≤ f(x, ei,mi) < mi.

Since, however, different participants use different moduli, it will be practical
to extend the definition to a common domain, which can even be chosen to
be the set of natural numbers. Let x be written in a base mi notation:
x =

∑

j xjm
j
i , and compute the function by the formula

f(x, ei,mi) =
∑

j

f(xj , ei,mi)m
j
i .

We define the decoding function similarly, using di in place of ei.
For the simpler version it follows, similarly to what was said above, that

these functions are inverses of each other, that (C1) holds, and that it can
also be conjectured that (C2) holds. In this version, the “post office” holds
no non-public information, and of course, each key dj has no information on
the other keys. Therefore, the above mentioned errors do not occur.

Chapter 13

Circuit complexity

A central, but extremely difficult problem in the theory of computation is to
prove lower bounds on the time and space complexity of various computa-
tional tasks. The key problem is whether P=NP, but much simpler questions
remain unanswered. The approach of classical logic, trying to extend the
methods that were used in Chapter 2 to prove undecidability results, seems
to fail badly.

Another, more promising approach to proving lower bounds on the com-
putational complexity of a problem is combinatorial. This approach focuses
on the Boolean circuit model of computation, and tries to analyze the (rather
complex) flow of information through the steps of the computation. We il-
lustrate this method by a beautiful (but rather difficult) proof in this spirit
(it might underline the difficulty of these questions that this is perhaps the
easiest proof to tell in this area!).

We discuss two very simple functions, already introduced in Chapter 1:
the majority function

MAJORITY(x1, . . . , xn) =

{

1 if at least n/2 of the variables is 1;

0 otherwise.

and the parity function or XOR function

PARITY(x1, . . . , xn) = x1 + x2 + · · ·+ xn (mod 2).

These functions are of course very easy to compute, but suppose we want to
do it in parallel in very little time. Instead of going into the complications
of PRAMs, let us consider a more general model of parallel computation,
namely, Boolean circuits with small depth. We will allow arbitrary fan-in
and fan-out (this is analogous to the concurrent-read-concurrent-write model

233

234 13. Circuit complexity

of parallel computation), although as the following exercise shows, this would
not be necessary.

Exercise 13.0.2. If a Boolean circuit has fan-in 2, and it computes a function
in n variables that depends on each of its variables, then its depth is at least
logn.

We can recall now from Chapter 1 that every Boolean function can be
computed by a Boolean circuit of depth 2. However, it is easy to see that
even for simple functions like the majority function, the resulting circuit
is exponentially large. On the other hand, if we have a polynomial time
algorithm to compute a Boolean function, then this can be converted (again,
as described in Chapter 1) to a Boolean circuit of polynomial size. However,
this circuit will have large (typically linear, if you are careful, logarithmic)
depth.

Can we simultaneously restrict the size to polynomial and the depth to
less than logarithmic? The answer is negative even for quite simple functions.
In a series of increasingly stronger results, Furst–Saxe–Sipser, Ajtai, Yao and
Hastad proved that every constant-depth circuit computing the parity func-
tion has exponential size, and that every polynomial-size circuit computing
the parity function has (essentially) logarithmic depth. Let us state the result
in detail (the proof is too complex to be given here).

Theorem 13.0.1. Every circuit with n input bits and depth d that computes

the parity function has at least 2(1/10)n
1/(d−1)

gates.

Not much later Razborov proved analogous results for the majority func-
tion. In fact, he proved a stronger result by allowing circuits that may have
parity gates, or XOR gates, in addition to the usual AND, OR and NOT gates,
where a parity gate computes the binary sum of any number of bits. The
proof, though not easy, can be reproduced here for the enjoyment of the truly
interested.

13.1 Lower bound for the Majority Function

Let us start with the exact statement of the theorem.

Theorem 13.1.1. If C is a circuit of depth d, with AND, OR, XOR, and
NOT gates that computes the majority function of 2n− 1 input bits, then C

has at least 2n
(1/2d)

/10
√
n gates.

The idea of the proof is to introduce “approximations” of the gates used
during the computation. Using the approximate gates, instead of the real
gates, one computes an approximation of the majority function. The quality

13.1. Lower bound for the Majority Function 235

of the approximation will be measured in terms of the number of inputs on
which the modified circuit differs from the original. The main point of the
approximation is to keep the computed function “simple” in some sense. We
will show that every “simple” function, and in particular the approximation
we compute, differs from the majority function on a significant fraction of
the inputs. Since the approximation of each gate has a limited effect on the
function computed, we can conclude that many approximations had to occur.

The proof will be easier to describe if we generalize the result to a family
of closely related functions, the k-threshold functions fk. The k-threshold
function is 1 when at least k of the inputs are 1. As Exercise 13.1.1 shows,
if there is a circuit of size s that computes the majority function of 2n − 1
elements in depth d, then for each k, 1 ≤ k ≤ n, there is a circuit of depth
d and size at most s that computes the k-threshold function on n elements.
Therefore, any exponential lower bound for fk implies a similar bound for the
majority function. We shall consider k = ⌈(n+h+1)/2⌉ for an appropriate h.

Exercise 13.1.1. Suppose that there is a circuit of size s that computes
the majority function of 2n− 1 elements in depth d. Show that for each k,
1 ≤ k ≤ n, there is a circuit of depth d and size at most s that computes the
k-threshold function on n elements.

Each Boolean function can be expressed as a polynomial over the two-
element field GF (2). (So in this chapter addition of 0-1 polynomials will be
always understood modulo 2.) In fact, such a representation can be com-
puted following the computation described by the circuit. If p1 and p2 are
polynomials representing two functions, then p1+p2 is the polynomial corre-
sponding to the XOR of the two functions. The polynomial p1p2 corresponds
to their AND, which makes it easy to see that (p1+1)(p2+1)+1 corresponds
to their OR. The polynomial 1−p corresponds to the negation of the function
represented by the polynomial p.

The measure of simplicity of a Boolean function f for this proof is the
degree of the polynomial representing the function or for short, the degree of
the function. Note that the inputs have degree 1, i.e., they are very simple.
But the degree may grow very fast as we follow the circuit; in fact, since we do
not restrict fan-in, a single OR gate can produce a function with arbitrarily
high degree!

The trick is to show that these functions can be approximated by poly-
nomials of low degree. The following lemma will serve as the basis for the
approximation.

Lemma 13.1.2. Let g1, . . . , gm be Boolean functions of degree at most h on
n binary inputs. If r ≥ 1 and f = ∨m

i=1gi, then there is a function f ′ of
degree at most rh that differs from f on at most 2n−r inputs.

236 13. Circuit complexity

Proof. Let us go through the indices 1, 2, . . . ,m one by one, and for each
such number, flip a coin. If we get HEAD, we select this number; else, we
move on. Let I1 be the set of numbers selected (so I1 is a random subset of
{1, . . . ,m}). We repeat this experiment r times, to get the random subsets
I1, . . . , Ir . Let

f ′
j =

∑

i∈Ij

gi,

and consider f ′ = ∨r
j=1f

′
j. We claim that the probability that f ′ satisfies the

requirements of the lemma is non-zero.
It is clear that the degree of the polynomial for f ′ is at most rh. Further-

more, consider an input α; we claim that the probability that f ′(α) 6= f(α)
is at most 2−r. To see this, consider two cases. If gi(α) = 0 for every i, then
both f(α) = 0 and f ′(α) = 0. On the other hand, if there exists an index i for
which gi(α) = 1, then f(α) = 1 and for each j, f ′

j(α) = 0 independently with
probability at most 1/2. Therefore, f ′(α) = 0 with probability at most 2−r,
and the expected number of inputs on which f ′ 6= f is at most 2n−r. Hence
for at least one particular choice of the sets Ij , the polynomial f ′ differs from
f on at most 2n−r inputs.

Corollary 13.1.3. The same holds for the AND function instead of OR.

Proof. Let f = ∧m
i=1gi = 1 + f0, where f0 = ∨m

i=1(1 + gi). Since the degree
of the functions 1 + gi is at most h, the function f ′ = 1 + f ′

0 satisfies the
requirements.

Next we show that any function of low degree has to differ from the k-
threshold function on a significant fraction of the inputs.

Lemma 13.1.4. Let n/2 < k ≤ n. Every polynomial with n variables of
degree h = 2k − n − 1 differs from the k-threshold function on at least

(

n
k

)

inputs.

Proof. Let g be a polynomial of degree h and let B denote the set of vectors
where it differs from fk. Let A denote the set of all 0-1 vectors of length n
containing exactly k 1’s.

For each Boolean function f , consider the summation function f̂(x) =
∑

y≤x f(y). It is trivial to see that the summation function of the monomial
xi1 · · ·xir is 1 for the incidence vector of the set {i1, . . . , ir} and 0 on all other
vectors. Hence it follows that f has degree at most h if and only if f̂ vanishes
on all vectors with more than h 1’s. In contrast to this, the summation
function of the k-threshold fk is 0 on all vectors with fewer than k 1’s, but 1
on all vectors with exactly k 1’s.

13.2. Monotone circuits 237

Consider the matrix M = (mab) whose rows are indexed by the members
of A, and whose columns are indexed by the members of B, and

mab =

{

1 if a ≥ b,

0 otherwise.

We want to show that the columns of this matrix generate the whole space
GF (2)A. This will imply that |B| ≥ |A| =

(

n
k

)

.
Let a1, a2 ∈ A and let a1∧a2 denote their coordinatewise minimum. Then

we have, by the definition of B,
∑

b≤a1
b∈B

ma2b =
∑

b≤a1∧a2
b∈B

1 =
∑

u≤a1∧a2

(

fk(u)+g(u)
)

=
∑

u≤a1∧a2

fk(u)+
∑

u≤a1∧a2

g(u).

The second term of this last expression is 0, since a1 ∧ a2 contains at least
h + 1 1’s. The first term is also 0 except if a1 = a2. The columns of M
therefore generate the unit vector corresponding to the coordinate a1, and so
they generate the whole space.

It is easy now to complete the proof theorem 13.1.1. Assume that there
is a circuit of size s and depth d to compute the k-threshold function for
inputs of size n. Now apply Lemma 13.1.2 with r = ⌊n1/(2d)⌋ to approximate
the OR and AND gates in this circuit. The functions computed by the gates
at the i-th level will be approximated by polynomials of degree at most ri.
Therefore, each resulting approximation pk of the k-threshold function will
have degree at most rd. Lemma 13.1.4 implies that for k = ⌈(n+ rd +1)/2⌉,
the polynomial pk differs from the k-threshold function on at least

(

n
k

)

inputs.
This shows that s2n−r ≥

(

n
k

)

. From this, routine calculations yield that

s ≥
(

n

k

)

2r−n >
2r

10
√
n
,

which establishes the desired exponential lower bound.

Exercise∗ 13.1.2. Let Mod3 denote the Boolean function whose value is 1
if and only if the sum of its inputs is divisible by 3. Prove that if a constant
depth circuit of AND, OR, XOR and NOT gates computes Mod3, then its
size is exponential.

13.2 Monotone circuits

Perhaps the deepest result on circuit complexity was obtained by Razborov
in 1985. The main point is that he does not make any assumption on the

238 13. Circuit complexity

depth of the circuit; but, unfortunately, he still has to make a rather strong
restriction, namely monotonicity. A Boolean circuit is monotone, if all of its
input nodes are unnegated variables, and it has no NOT gates. Obviously,
such a circuit can compute only monotone functions; but it is not difficult to
see that every monotone function can be computed by a monotone circuit.
The monotonicity of the function is not a serious restriction; many interesting
functions in NP (e.g. matching, clique, colorability etc.) are monotone. For
example, the k-clique function is defined as follows: it has

(

n
2

)

variables xij ,
1 ≤ i < j ≤ n, and its value is 1 if and only if the graph described by
the particular setting of the variables has a clique of size k. Since some of
these are NP-complete, it follows that every problem in NP can be reduced
in polynomial time to the computation of a monotone function in NP.

Razborov gave a superpolynomial lower bound on the monotone circuit
complexity of the clique problem, without any restriction on the depth. This
result was strengthened by Andreev, Alon and Boppana, to an exponential
lower bound on the monotone circuit complexity of the k-clique function.

Unfortunately, while, as we have seen, restricting the functions to mono-
tone functions does not mean a substantial restriction of generality, the re-
striction of the circuits to monotone circuits does. É. Tardos constructed a
family of monotone Boolean functions which can be computed in polynomial
time, but need an exponential number of gates if we use a monotone circuit.

Chapter 14

Interactive proofs

14.1 How to save the last move in chess?

Alice and Bob are playing chess over the phone. They want to interrupt the
game for the night; how can they do it so that the person to move should
not get the improper advantage of being able to think about his move whole
night? At a tournament, the last move is not made on the board, only written
down, put in an envelope, and deposited with the referee. But now the two
players have no referee, no envelope, no contact other than the telephone line.
The player making the last move (say, Alice) has to tell something; but this
information should not be enough to determine the move, Bob would gain
undue advantage. The next morning (or whenever they continue the game)
she has to give some additional information, some “key”, which allows Bob
to reconstruct the move.

Surely this is impossible?! If she gives enough information the first time
to uniquely determine his move, Bob will know her move; if the informa-
tion given the first time allows several moves, then she can think about it
overnight, and change her mind without being noticed. If we measure in-
formation in the sense of classical information theory, then there is no way
out of this dilemma. But complexity comes to our help: it is not enough to
communicate information, it must also be processed.

To describe a solution, we need a few words on algorithmic number theory.
Given a natural number N , it can be tested in polynomial time whether it is a
prime. These algorithms are also practically quite efficient, and work well up
to several hundred digits. However, all the known prime testing algorithms
have the (somewhat strange) feature that if they conclude that N is not a
prime, they do not (usually) find a decomposition of N into a product of two
smaller natural numbers (usually, they conclude that N is not a prime by

239

240 14. Interactive proofs

finding that N violates Fermat’s “Little” Theorem). It seems impossible to
find the prime factorization of a natural number N in polynomial time.

Remark. Of course, very powerful supercomputers and massively parallel
systems can be used to find decompositions by brute force for fairly large
numbers; the current limit is around 100 digits, and the difficulty grows very
fast (exponentially) with number of digits. To find the prime decomposition
of a number with 400 digits is way beyond the possibilities of computers in
the foreseeable future.

Returning to our problem, Alice and Bob can agree to encode every move
as a 4-digit number. Alice extends these four digits to a prime number
with 200 digits. (She can randomly extend the number and then test if the
resulting number is a prime. By the Prime Number Theorem, she will have a
success out of every ln 10200 ≈ 460 trials.) She also generates another prime
with 201 digits and computes the product of them. The result is a number
N with 400 or 401 digits; she sends this number to Bob. Next morning,
she sends both prime factors to Bob. He checks that they are primes, their
product is N , and reconstructs Alice’s move from the first four digits of the
smaller prime.

The number N contains all the information about her move: this consists
of the first four digits of the smaller prime factor of N . Alice has to commit
herself to the move when sending N . To find out the move of Alice, Bob
would have to find the prime factors of N ; this is, however, hopeless. So Bob
only learns the move when the factors are revealed the next morning.

What Alice and Bob have established is an electronic “envelope” of a
method to deposit information at a certain time that can be retrieved at
a given later time, and cannot be changed in the meanwhile. The key ingre-
dient of their scheme is complexity: the computational difficulty to find the
factorization of an integer. In this scheme, factoring could be replaced by
any other problem in NP that is (probably) not in P.

To give an exact definition, we restrict ourselves to hiding a single bit.
(Longer messages can be hidden bit-by-bit.) So define a keybox as a function
f : {0, 1} × {0, 1}n → {0, 1}N with the following properties:

(a) the function is polynomial time computable (this in particularly implies
that N is bounded by a polynomial of n);

(b) f(0, y) 6= f(1, y) (y ∈ {0, 1}n);
(c) for every randomized polynomial time algorithm A : {0, 1}N → {0, 1}

and for every x ∈ {0, 1}, if y ∈ {0, 1}n is chosen uniformly at random, then
the probability that f(A(f(x, y)) = x is at most negligibly larger than 1/2.

The above scheme shows how to construct a keybox if we assume that
prime factorization is difficult.

14.3. How to use your password – without telling it? 241

14.2 How to check a password –

without knowing it?

In a bank, a cash machine works by name and password. This system is safe
as long as the password is kept secret. But there is one week point in security:
the computer of the bank must store the password, and the programmer may
learn it and later misuse it.

Complexity theory provides a scheme where the bank can verify that the
costumer does indeed know the password — without storing the password
itself. One solution uses the same construction as our telephone chess ex-
ample. The password is a 200-digit prime number P (this is, of course, too
long for everyday use, but it illustrates the idea best). When the costumer
chooses the password, he also chooses another prime with 201 digits, forms
the product N of the two primes, and tells the bank the number N . When
the teller is used, the costumer tells his name and the password P . The com-
puter of the bank checks whether or not P is a divisor of N ; if so, it accepts
P as a proper password. The division of a 400 digit number by a 200 digit
number is a trivial task for a computer.

Let us assume now that a programmer learns the number N stored along
with the files of our costumer. To use this in order to impersonate the
costumer, he has to find a 200-digit number that is a divisor of N ; but
this is essentially the same problem as finding the prime factorization of N ,
and, as remarked above, is hopelessly difficult. So — even though all the
necessary information is contained in the number N — the computational
complexity of the factoring problem protects the password of the costumer!

There are many other schemes to achieve the same, let us recall the one
already mention in Chapter 12.2, where the customer chooses a Hamiltonian
cycle in a graph with a 1000 vertices and adds 5000 further edges to it.

Many other problems in mathematics (in a sense, every problem in NP
that is not in P) gives rise to a password scheme.

14.3 How to use your password –
without telling it?

The password scheme discussed in the previous section is secure if the pro-
gram is honest; but what happens if the program itself contains a part that
simply reads off the password the costumer uses, and tells it to the program-
mer? In this case, the password is compromised if it is used but once. There
does not seem to be any way out — how could one use the passport without
telling it to the computer?

242 14. Interactive proofs

It sounds paradoxical, but there is a scheme which allows the costumer to
convince the bank that he knows the password — without giving the slightest
hint as to what the password is! We will give an informal description of the
idea (following Blum (1987)), by changing roles: let me be the costumer and
you (the audience) play the role of the computer of the bank. I will use
two overhead projectors. The graph G shown on the first projector is the
graph known to the bank; I label its nodes for convenience. My password
is a Hamiltonian cycle (a polygon going through each node exactly once) in
this graph, which I know but do not want to reveal.

I have prepared two further transparencies. The first contains a polygon
with the same number of nodes as G, drawn with random positions for the
nodes and without labels. The second transparency, laid over the first, con-
tains the labels of the nodes and the edges that complete it to a drawing of
the graph G (with the nodes in different positions). The two transparencies
are covered by a sheet of paper.

Now the audience may choose: should I remove the top sheet or the two
top sheets? No matter which choice is made, the view contains no information
about the Hamiltonian cycle, since it can be predicted: if the top sheet is
removed, what is shown is a re-drawing of the graph G, with its nodes in
random positions; if the two top sheets are removed, what is shown is a
polygon with the right number of nodes, randomly drawn in the plane.

But the fact that the audience sees what is expected is an evidence that I
know a Hamiltonian cycle in G! For suppose that G contains no Hamiltonian
cycle, or at least I don’t know such a cycle. How can I prepare the two
transparencies? Either I cheat by drawing something different on the bottom
transparency (say, a polygon with fewer nodes, or missing edges), or by having
a different graph on the two transparencies together.

Of course, I may be lucky (say, I draw a polygon with fewer edges and
the audience opts to view the two transparencies together) and I will not be
discovered; but if I cheat, I only have a chance of 1/2 to get away with it. We
can repeat this 100 times (each time with a brand new drawing!); then my
chance for being lucky each time is less than 2−100, which is much less than
the probability that a meteorite hits the building during this demonstration.
So if a 100 times in a row, the audience sees what it expects, this is a proof
that I know a Hamiltonian cycle in the graph!

To make this argument precise, we have to get rid of non-mathematical no-
tions like overhead projectors and transparencies. The reader may figure out
how to replace these by keyboxes, which have been mathematically defined
in Section 14.1.

Exercise 14.3.1. Give a formal description of the above proof using en-
velopes.

14.4. How to prove non-existence? 243

Remark. The most interesting aspect of the scheme described above is that
it extends the notion of a proof, thought (at least in mathematics) to be
well established for more than 2000 years. In the classical sense, a proof is
written down entirely by the author (whom we call the Prover), and then it is
verified by the reader (whom we call the Verifier). Here, there is interaction
between the Prover and the Verifier: the action taken by the Prover depends
on “questions” by the Verifier. The notion of interactive proof systems was
introduced independently by Goldwasser, Micali and Rackoff and by Babai
around 1985, and has lead to many deep and surprising results in computer
science and mathematical logic.

The kind of interactive proof described in this section, where the Verifier
gets no information other than a single bit telling that the claim of the Prover
is correct, is called a zero-knowledge proof. This notion was introduced by
Goldwasser, Micali and Rackoff. We will not elaborate on it in these notes.

Interactive proofs are however interesting from many other aspects, and
we discuss them in detail in the rest of this Chapter.

Remark. There is another feature which distinguishes this scheme from a
classical proof: it also makes use of lack of information, namely, that I cannot
possibly know in advance the choice of the audience. (If I am telling, say,
Gauss’ proof that the regular 7-gon cannot be constructed by compass and
ruler, then it remains a valid proof even if I anticipate the questions from
the audience, or even have a friend “planted” in the audience asking the
questions I wish.) In a sense, a password scheme is also an interactive proof:
my password is a proof that I have the right to access the account — and
again, a certain “lack of information” is a key assumption, namely, that no
unauthorized person can possibly know my password.

Exercise 14.3.2. Give a zero-knowledge proof for the 3-colorability of a
graph.

14.4 How to prove non-existence?

It is easy to prove that a graph is Hamiltonian: it suffices to exhibit a Hamil-
tonian cycle (the language of Hamiltonian graphs is in NP). But how to prove
it if it is not Hamiltonian?

There are many problems (e.g, the existence of a perfect matching, or
embeddability in the plane), for which there is also an easy way to prove
non-existence; in other words, these problems are in NP∩co-NP. For these
problems, the existence of such a proof often depends on rather deep the-
orems, such as the Marriage Theorem of Frobenius and König, or Tutte’s
theorem, or Kuratowski’s Theorem on planarity. But for the Hamiltonian

244 14. Interactive proofs

cycle problem no similar result is known; in fact, if NP6=co-NP then no NP-
complete problem can have such a “good characterization”.

It turns out that with interaction, things get easier, and a Prover (being
computationally very powerful himself) can convince a Verifier (who works
in polynomial time and, in particular, is able to follow proofs only if they
have polynomial length relative to the input size) about nonexistence. We
start with the relatively simple interactive protocol for the graph isomorphism
problem.

Problem 14.4.1. Given two graphs G1 and G2, are they isomorphic?

Trivially, the problem is in NP, and it is not known whether it is in co-NP
(it is probably not). However, there is a simple interactive protocol by which
the Prover can convince the verifier that the two graphs are not isomorphic.

The Verifier selects one of the two graphs at random (each with probability
1/2, and randomly relabels its nodes, to get a third graph G3. She then asks
the Prover to guess which of G1 and G2 it comes from.

If the two graphs are not isomorphic, the Prover can run any simple iso-
morphism test to tell which of G1 and G2 is isomorphic to G3. (This may
take exponential time, but the Prover is very powerful, and can do this.) On
the other hand, if the two graphs are isomorphic, the Prover only sees 3 iso-
morphic graphs, and has only a chance of 1/2 to guess the answer correctly.
(If this probability of being cheated is too high for the Verifier, she can re-
peat it a hundred times, so that the probability that the Prover succeeds in
proving a false thing is less than 2−100.)

One can design an interactive protocol to prove that a given graph has no
Hamiltonian cycle, is not 3-colorable, etc. In fact, it suffices to design such
a protocol for the negation of any NP-complete problem; then all problems
in NP can be reduced to it. We shall sketch the protocol, due to Nisan, that
works for the following NP-complete problem:

Problem 14.4.2. Given a polynomial p(x1, . . . , xn) with integral coefficients
(say, of degree n), is there a point y ∈ {0, 1}n such that f(y) 6= 0?

Trivially, the problem is in NP, and in fact it is NP-complete. (See Exercise
14.4.1.) But how to prove if the polynomial vanishes on {0, 1}n?

The property of f the Prover wants to prove is equivalent to saying that
∑

x1,...,xn∈{0,1}

p2(x1, . . . , xn) = 0. (14.4.1)

Of course, the sum on the left hand side has an enormous number of terms,
so the Verifier cannot check it directly. The Prover suggests to consider the
one-variable polynomial

f1(x) =
∑

x2,...,xn∈{0,1}

p2(x, x2, . . . , xn),

14.5. How to verify proofs 245

and offers to reveal its explicit form:

f1(x) = a0 + a1x+ · · ·+ adx
d, (14.4.2)

where d = 2n. The Verifier checks, using this form, that f1(0) + f1(1) = 0;
this is easy. But how to know that (14.4.2) is the true form of f1(x)? To verify
the coefficients one-by-one would mean to reduce an instance in n variables to
d+1 instances in n−1 variables, which would lead to a hopelessly exponential
protocol with more than dn steps.

Here is the trick: the Verifier chooses a random value ξ ∈ {0, . . . , 2n3},
and requests a proof of the equality

f1(ξ) = a0 + a1ξ + · · ·+ adξ
d. (14.4.3)

Note that if the polynomials on both sides of (14.4.2) are distinct, then they
agree on at most d = 2n places, and hence the probability that the randomly
chosen integer ξ is one of these places is at most 2n/2n3 = 1/n2. So if the
Prover is cheating, the chance that he is lucky at this point is at most 1/n2.

Now (14.4.3) can be written as

∑

x2,...,xn∈{0,1}

p2(ξ, x2 . . . , xn) = b, (14.4.4)

where the verifier easily calculates the value b = a0 + a1ξ + · · ·+ adξ
d. This

is of the same form as (14.4.1) (except that the right hand side is not 0,
which is irrelevant) and that now we have only n − 1 variables. Therefore,
the Prover can prove recursively that (14.4.4) holds. The amount of exchange
is O(d log n) bits per iteration, which gives a total O(dn log n) bits; the total
computational time used by the verifier is clearly also polynomial.

Since the problem solved above is NP-complete, every other problem in
NP can be reduced to it, and so it follows that every problem in co-NP
has polynomial time interactive proofs. But the full picture is much more
interesting. It is easy to see that every polynomial time interactive proof
translates into a polynomial-space algorithm: without a limitation on time,
the Prover and Verifier can go through all possible choices of the random
numbers, and once a run is completed, it can be erased except for adding
1 to the total number of successful or unsuccessful runs. It turns out that
the protocol described above can be improved to show that every problem in
PSPACE has polynomial time interactive proofs (Lund, Fortnow, Karloff and
Nisan (1990); Shamir (1990)).

Exercise 14.4.1. Prove that Problem 14.4.2 is NP-complete.

246 14. Interactive proofs

14.5 How to verify proofs that keep the main

result secret?

Our last two examples come from a field which causes much headache: editing
scientific journals. These are “fun” examples and their purpose is to illumi-
nate the logic of interactive proofs rather then propose real-life applications
(although with the fast development of e-mail, electronic bulletin boards,
on-line reviewing, and other forms of electronic publications—who knows?).

A typical impasse situation in journal editing is caused by the following
letter: “I have a proof for P6=NP, but I won’t send you the details because
I am afraid you’d steal it. But I want you to announce the result.” All
we can do is to point out that the policy of the Journal is to publish results
only together with their proofs (whose correctness is verified by two referees).
There is no way to guarantee that the editor and/or the referee, having read
the proof, does not publish it under his own name (unfortunately, this does
seem to happen occasionally).

The result sketched in the Section 14.3, however, can resolve the situation.
The author has to convince the editor that he has a proof, without giving
any information about the details of the proof. Assume that the theorem
itself can be stated with n characters, and we assume that we have an upper
bound k for the proof (the proof has to be written out formally, with all
details included). The set of pairs (x, y), where x is mathematical statement
that has a proof of length at most |y| in NP. (Note that we bound the length
of the proof in unary, through the length of y rather than by the integer
encoded by y. We may assume that y is of the form 11 . . . 1.)

So NP-completeness of the Hamiltonian cycle problem gives the following:
for every mathematical statement x and string y one can construct a graph
G such that x has a proof of length at most |y| if and only if G has a
Hamiltonian cycle. So the editor can come up with the following suggestion
upon receiving the above letter: “Please construct the graph corresponding
to Fermat’s last theorem and the length of your proof, and prove me, using
Blum’s protocol, that this graph has a Hamiltonian cycle.” This takes some
interaction (exchange of correspondence), but in principle it can be done.

14.6 How to referee exponentially long papers?

Two Provers

But of course, the real difficulty with editing a Journal is to find referees,
especially for longer papers. Who wants to spend months to read a paper
of, say, 150 pages, and look for errors in the complicated formulas filling its

14.6. How to referee exponentially long papers? 247

pages? And, unfortunately, the devil is often hidden in the little details: a
“-” instead of a “+” on the 79-th page may spoil the whole paper. . .

The results of Babai, Fortnow and Lund (1990) offer new possibilities. Let
us give, first, an informal description of their method.

Assume that instead of one, we have two Provers. They are isolated, so
that they cannot communicate with each other, only with the Verifier. It is
clear that this makes it more difficult for them to cheat (see any crime drama),
and so they may succeed in convincing the Verifier about some truth that
they could not individually convince him about. Does this really happen?
Babai et al. gave a protocol that allows two provers to give a polynomial
time interactive proof for every property that has an “ordinary” proof of
exponential length.

It is interesting to point out that this is the first result where we see
that interaction really helps, without any unproven complexity hypothesis
like P6=NP: it is known that there are properties whose shortest proofs grow
exponentially with the input size of the instance.

The protocol of Babai et al. is a very involved extension of the protocol
described in section 14.4, and we cannot even sketch it here.

Probabilistically Checkable Proofs

There is another interpretation of these results. It is commonplace in math-
ematics that sometimes making a proof longer (including more detail and
explanation) makes it easier to read. Can this be measured? If a proof is
written down compactly, without redundancy, then one has to read the whole
proof in order to check its correctness. One way of interpreting the results
mentioned above is that there is a way to write down a proof so that a ref-
eree can check the correctness of the theorem by reading only a tiny fraction
of it. The proof becomes longer than necessary, but not much longer. The
number of characters the referee has to read is only about the logarithm of
the original proof length! To be precise, if the original proof has length N
then the new proof can be checked by reading O(logN) characters; this is
due to Feige, Goldwasser, Lovász, Safra and Szegedy (1991). So a 2000-page
proof (and such proofs exist!), can be checked by reading a few lines! What
a heaven for referees and editors!

This modified write-up of the proof may be viewed as an “encoding”; the en-
coding protects against “local” errors just like classical error-correcting codes
protect against “local” errors in telecommunication. The novelty here is the
combination of ideas from error-correcting codes with complexity theory.

Let us state the result formally. Let A be a randomized algorithm that
for every x, y ∈ {0, 1}∗ computes a bit A(x, y). We say that A is a verifier

248 14. Interactive proofs

for a language L ⊆ {0, 1}2 with one-sided error if for every positive integer n
there exists a positive integer m such that for every x ∈ {0, 1}n,

(a) if x ∈ L, then there exists a y ∈ {0, 1}m such that A(x, y) = 1 with
probability 1;

(b) if x /∈ L, then for all y ∈ {0, 1}m, the probability that A(x, y) = 1 is
less than 1/2.

We say that the verifier is (f, g, h)-lazy, if it works in O(f(|x|)) time, uses
O(g(|x|)) random bits, and reads O(h(|x|)) bits of the string y.

Clearly NP consists of those languages which have an (nconst, 0, nconst)-lazy
verifier.

The following theorem, called the PCP Theorem, was proved by Arora,
Lund, Motwani, Safra, Sudan and Szegedy in 1992. The proof is involved
and not given here.

Theorem 14.6.1 (PCP theorem). For every language in NP there is an
(nconst, logn, 1)-lazy verifier.

One should note that we do not need witnesses y longer than a polynomial
in |x|. Indeed, the verifier uses at most c1 logn bits, so the total number of
outcomes for his coin flips is at most nc1 . Furthermore, for any outcome of
the coin flips, he reads at most c2 bits of y. So there are at most c2nc1 bits
in y that are ever read; we can dispose of the rest.

14.7 Approximability

A significant part of problems arising in the real world is NP-complete. Since
we must find some kind of solutions even for these, several methods exist, see
last comment of Chapter 4. In this section we discuss approximate solutions.
These are hard to define for decision problems, where we expect a 0-1 answer.
Because of this, here we deal with optimization problems. One part of the
input specifies the set of feasible solutions and another gives an objective
function that assigns a real value to each feasible solution. Our goal is to find
a solution that minimizes (or maximizes) the objective function. E.g. the
input is a graph, the feasible solutions are the proper colorings of its vertices
and the objective function is the number of colors that we use.

For simplicity, the definitions here are only given in case the goal is to
minimize the objective function, similar definitions can be given in case if
the goal is to maximize it. For a given input, let OPT denote the value of
the optimal solution, i.e. the infimum of the values of the objective function
taken on a feasible solution. An algorithm is an r(n)-approximation, if for all
n on all inputs of size n it returns a feasible solution (if exists) on which the
value of the objective function is at most r(n)· OPT. An important special

14.7. Approximability 249

case is when r(n) does not depend on n but is some constant c, in this case
we say the algorithm is a c-approximation. A problem is r(n)-approximable
if it has a polynomial time r(n)-approximation algorithm.

Example 14.7.1. In a graph we want to find the minimum vertex cover
(such a vertex set that is incident to every edge). It is easy to give a 2-
approximation: take a maximal M matching, and output the 2|M | endpoints
of the edges of M . The maximality means that any edge is incident to this
vertex set, so our solution is feasible. On the other hand, to cover the edges
of M , we need at least |M | vertices, thus OPT≥ |M |.

In most problems we do not know any, or just very weak, approximation
results, many times an O(log n)-approximation already makes us satisfied
(e.g. we do not know anything better for the Blocking Set Problem (Problem
4.5.1) where we want to find a small set intersecting every set of a given a
set system. However, a significant class of problems admit a c-approximation
for some c, this class is denoted by APX.

For many NP-hard problems we can do even better. We say that a prob-
lem has a polynomial time approximation scheme (PTAS) if for every ε > 0
there is a (1 + ε)-approximation. A problem has a fully polynomial time ap-
proximation scheme (FPTAS) if every ε > 0 there is a (1+ ε)-approximation
algorithm whose running time is a polynomial of n (the length of the input)
and 1/ε. (So the running time of a PTAS can be n21/ε but not of a FPTAS.)
An intermediate, recently defined class is efficient polynomial time approx-
imation scheme (EPTAS) where the running time must be f(ε) · nc, so the
power of n cannot depend on ε but f(ε) = 21/ε is allowed.

We can also define the class of APX-complete problems. For the exact
definition we would need a more sophisticated notion of reduction, so here
we only mention the corollary that if a problem in APX is APX-complete, if
there is a c > 1 such that if it were c-approximable, then this would imply
P=NP. So if we suppose P6=NP, then APX-complete problems cannot have
a PTAS.

Limits of approximability

The main application of the PCP Theorem is that it implies lower bounds
on how well combinatorial optimization problems can be approximated. We
illustrate this by the following. Recall that the clique number ω(G), the
maximum number of nodes in a clique of G, is NP-hard to compute.

Theorem 14.7.1. Suppose that there is a polynomial time algorithm that
computes an approximation f(G) of the clique number such that for every
graph G, ω(G) ≤ f(G) ≤ 2ω(G). Then P=NP.

250 14. Interactive proofs

Proof. Let L ⊆ {0, 1}∗ be any NP-complete language, say 3-SAT. By the
PCP Theorem, it has an (nconst, logn, 1)-lazy verifier A. For a fixed length
n = |x|, let A use k ≤ c1 logn random bits and read b bits of y.

For a given string x ∈ {0, 1}∗, we construct a graph Gx as follows. The
nodes of Gx will be certain pairs (z, u), where y ∈ {0, 1}k and u ∈ {0, 1}b.
To decide if such a pair is a node, we start the algorithm A with the given x
and with z as its random bits. After some computation, it tries to look up b
entries of y; we give it the bits u1, . . . , ub. At the end, it outputs 0 or 1; we
take (z, u) as a node of Gx if it outputs 1.

To decide if two pairs (z, u) and (z′, u′) are adjacent, let us also remember
which positions in y the algorithm A tried to read when starting with (x, u),
and also when starting with (x, u′). If there is one and the same position read
both times, but the corresponding bits of u and u′ are different, we say that
there is a conflict. If there is no conflict, then we connect (z, u) and (z′, u′)
by an edge. Note that the graph Gx can be constructed in polynomial time.

Suppose that x ∈ L. Then this has a proof (witness) y ∈ {0, 1}m. For
every sequence z = z1 . . . zk of random bits, we can specify a string u ∈ {0, 1}b
such that (z, u) ∈ V (Gx), namely the string of bits that the algorithm reads
when started with inputs x, y and z. Furthermore, it is trivial that between
these there is no conflict, so these 2k nodes form a clique. Thus in this case
ω(Gx) ≥ 2k.

Now suppose that x /∈ L, and assume that the nodes (z, u), (z′, u′), . . . ,
(z(N), u(N)) form a clique in Gx. The strings z, z′, . . . must be different;
indeed, if (say) z = z′, then A tries to look up the same positions in y in
both runs, so if there is no conflict, then we must have u = u′.

We create a string y as follows. We start with m empty positions. We
run A with input x and random bits z, and we insert the bits of u in the
b positions which the algorithm tries to look up. Then we repeat this with
random bits z′; if we need to write in a position we already have a bit in, we
do not have to change it since (z, u) and (z′, u′) are connected by an edge.
Similarly, we can enter the bits of u′′, . . . u(N) in the appropriate positions
without having to overwrite previously entered bits.

At the end, certain positions in y will be filled. We fill the rest arbitrarily.
It is clear from the construction that for the string y constructed this way,

Pr(A(x, y) = 1) ≥ N

2k
,

and so by condition (b), N < 2k−1. So if x /∈ L then ω(Gx) < 2k−1.
Now if a polynomial time algorithm exists that computes a value f(Gx)

such that ω(Gx) ≤ f(Gx) ≤ 2ω(Gx), then we have f(Gx) ≥ ω(Gx) ≥ 2k if
x ∈ L, but f(Gx) ≤ 2ω(Gx) < 2k if x /∈ L, so we can decide whether x ∈ L
in polynomial time. Since L is NP-complete, this implies that P=NP.

14.7. Approximability 251

The above method (using stronger forms of the PCP-theorem) have been
significantly extended, e.g. the following strengthening of the above theorem
was proved. If P6=NP, then there is no n0.999-approximation for ω (Håstad,
Zuckerman). Another example is that if P6=NP, then there is no (c logn)-
approximation for the Blocking Set Problem (Raz and Safra). Famous APX-
complete problems include Maximal Cut (even restricted to 3-regular graphs),
Vertex Cover and the Smallest (size) Maximal (unextendable) Matching.

Bibliography

[1] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullmann, Design and
Analysis of Computer Algorithms, Addison-Wesley, New York, 1974.

[2] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, Algo-
rithms, McGraw-Hill, New York, 1990.

[3] Michael R. Garey and David S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

[4] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison-Wesley, New York,
1979.

[5] Donald E. Knuth, The Art of Computer Programming, I-III, Addison-
Wesley, New York, 1969–1981.

[6] L. A. Levin, Fundamentals of Computing Theory, Boston University,
Boston, MA 02215, 1996. Lecture notes.

[7] Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory
of Computation, Prentice-Hall, New York, 1981.

[8] Christos H. Papadimitriou, Computational Complexity, Addison-
Wesley, New York, 1994.

[9] Christos H. Papadimitriou and K. Stieglitz, Combinatorial Optimiza-
tion: Algorithms and Complexity, Prentice-Hall, New York, 1982.

[10] Alexander Schrijver, Theory of Linear and Integer Programming, Wi-
ley, New York, 1986.

[11] Robert Sedgewick, Algorithms, Addison-Wesley, New York, 1983.

[12] Klaus Wagner and Gert Wechsung, Computational Complexity, Reidel,
New York, 1986.

253

	Introduction
	Some notation and definitions

	Models of Computation
	Finite automata
	The Turing machine
	The Random Access Machine
	Boolean functions and Boolean circuits

	Algorithmic decidability
	Recursive and recursively enumerable languages
	Other undecidable problems
	Computability in logic
	Godel's incompleteness theorem
	First-order logic

	Computation with resource bounds
	Polynomial time
	Other complexity classes
	General theorems on space and time complexity

	Non-deterministic algorithms
	Non-deterministic Turing machines
	Witnesses and the complexity of non-deterministic algorithms
	Examples of languages in NP
	NP-completeness
	Further NP-complete problems

	Randomized algorithms
	Verifying a polynomial identity
	Primality testing
	Randomized complexity classes

	Information complexity
	Information complexity
	Self-delimiting information complexity
	The notion of a random sequence
	Kolmogorov complexity, entropy and coding

	Pseudorandom numbers
	Classical methods
	The notion of a pseudorandom number generator
	One-way functions
	Candidates for one-way functions
	Discrete square roots

	Decision trees
	Algorithms using decision trees
	Non-deterministic decision trees
	Lower bounds on the depth of decision trees

	Algebraic computations
	Models of algebraic computation
	Multiplication
	Arithmetic operations on large numbers
	Matrix multiplication
	Inverting matrices
	Multiplication of polynomials
	Discrete Fourier transform

	Algebraic complexity theory
	The complexity of computing square-sums
	Evaluation of polynomials
	Formula complexity and circuit complexity

	Parallel algorithms
	Parallel random access machines
	The class NC

	Communication complexity
	Communication matrix and protocol-tree
	Examples
	Non-deterministic communication complexity
	Randomized protocols

	An application of complexity: cryptography
	A classical problem
	A simple complexity-theoretic model
	Public-key cryptography
	The Rivest–Shamir–Adleman code (RSA code)

	Circuit complexity
	Lower bound for the Majority Function
	Monotone circuits

	Interactive proofs
	How to save the last move in chess?
	How to check a password – without knowing it?
	How to use your password – without telling it?
	How to prove non-existence?
	How to verify proofs that keep the main result secret?
	How to referee exponentially long papers?
	Approximability

